Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics

被引:21
|
作者
Amodio, Pierluigi [1 ]
Brugnano, Luigi [2 ]
Iavernaro, Felice [1 ]
机构
[1] Univ Bari, Dipartimento Matemat, Bari, Italy
[2] Univ Florence, Dipartimento Matemat & Informat U Dini, Florence, Italy
关键词
Energy conserving Runge-Kutta methods; Hamiltonian boundary value problems; Astrodynamics; Optimal control; PERIODIC-ORBITS; HALO-ORBIT; CONTINUATION;
D O I
10.1007/s10444-014-9390-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new methods for the numerical solution of general Hamiltonian boundary value problems. The main feature of the new formulae is to produce numerical solutions along which the energy is precisely conserved, as is the case with the analytical solution. We apply the methods to locate periodic orbits in the circular restricted three body problem by using their energy value rather than their period as input data. We also use the methods for solving optimal transfer problems in astrodynamics.
引用
收藏
页码:881 / 905
页数:25
相关论文
共 50 条
  • [1] Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics
    Pierluigi Amodio
    Luigi Brugnano
    Felice Iavernaro
    Advances in Computational Mathematics, 2015, 41 : 881 - 905
  • [2] A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrodinger equation with wave operator
    Brugnano, Luigi
    Zhang, Chengjian
    Li, Dongfang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 : 33 - 49
  • [3] Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg-de Vries equation
    Brugnano, Luigi
    Gurioli, Gianmarco
    Sun, Yajuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 : 117 - 135
  • [4] Explicit exactly energy-conserving methods for Hamiltonian systems
    Bilbao, Stefan
    Ducceschi, Michele
    Zama, Fabiana
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
  • [5] ARBITRARILY HIGH-ORDER ENERGY-CONSERVING METHODS FOR HAMILTONIAN PROBLEMS WITH QUADRATIC HOLONOMIC CONSTRAINTS
    Amodio, Pierluigi
    Brugnano, Luigi
    Frasca-Caccia, Gianluca
    Iavernaro, Felice
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 1145 - 1171
  • [6] A Novel Energy-conserving Scheme for Eight-dimensional Hamiltonian Problems
    Hu, Shiyang
    Wu, Xin
    Huang, Guoqing
    Liang, Enwei
    ASTROPHYSICAL JOURNAL, 2019, 887 (02):
  • [7] ENERGY-CONSERVING DRYING METHODS
    BRYAND, ET
    PAPER TECHNOLOGY AND INDUSTRY, 1975, 16 (01): : 24 - 29
  • [8] Solving the nonlinear Schrodinger equation using energy conserving Hamiltonian boundary value methods
    Barletti, L.
    Brugnano, L.
    Frasca Caccia, Gianluca
    Iavernaro, F.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [9] Arbitrarily high-order energy-conserving methods for Poisson problems
    Amodio, Pierluigi
    Brugnano, Luigi
    Iavernaro, Felice
    NUMERICAL ALGORITHMS, 2022, 91 (02) : 861 - 894
  • [10] Arbitrarily high-order energy-conserving methods for Poisson problems
    Pierluigi Amodio
    Luigi Brugnano
    Felice Iavernaro
    Numerical Algorithms, 2022, 91 : 861 - 894