Deep learning for single-shot autofocus microscopy

被引:105
|
作者
Pinkard, Henry [1 ,2 ,3 ,4 ]
Phillips, Zachary [5 ]
Babakhani, Arman [6 ]
Fletcher, Daniel A. [7 ,8 ,9 ]
Waller, Laura [2 ,3 ,5 ,9 ]
机构
[1] Univ Calif Berkeley, Computat Biol Grad Grp, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Berkeley Inst Data Sci, Berkeley, CA 94720 USA
[4] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94158 USA
[5] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[8] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA
[9] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
来源
OPTICA | 2019年 / 6卷 / 06期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HIGH-RESOLUTION; FIELD;
D O I
10.1364/OPTICA.6.000794
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Maintaining an in-focus image over long time scales is an essential and nontrivial task for a variety of microscopy applications. Here, we describe a fast, robust autofocusing method compatible with a wide range of existing microscopes. It requires only the addition of one or a few off-axis illumination sources (e.g., LEDs), and can predict the focus correction from a single image with this illumination. We designed a neural network architecture, the fully connected Fourier neural network (FCFNN), that exploits an understanding of the physics of the illumination to make accurate predictions with 2-3 orders of magnitude fewer learned parameters and less memory usage than existing state-of-the-art architectures, allowing it to be trained without any specialized hardware. We provide an open-source implementation of our method, to enable fast, inexpensive autofocus compatible with a variety of microscopes. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:794 / 797
页数:4
相关论文
共 50 条
  • [1] Deep learning-based single-shot autofocus method for digital microscopy
    Liao, Jun
    Chen, Xu
    Ding, Ge
    Dong, Pei
    Ye, Hu
    Wang, Han
    Zhang, Yongbing
    Yao, Jianhua
    [J]. BIOMEDICAL OPTICS EXPRESS, 2022, 13 (01) : 314 - 327
  • [2] A Single-Shot Autofocus Approach for Surface Plasmon Resonance Microscopy
    Xu, Ying
    Wang, Xu
    Zhai, Chunhui
    Wang, Jingan
    Zeng, Qiang
    Yang, Yuting
    Yu, Hui
    [J]. ANALYTICAL CHEMISTRY, 2021, 93 (04) : 2433 - 2439
  • [3] Single-Shot Autofocusing of Microscopy Images Using Deep Learning
    Luo, Yilin
    Huang, Luzhe
    Rivenson, Yair
    Ozcan, Aydogan
    [J]. ACS PHOTONICS, 2021, 8 (02) : 625 - 638
  • [4] Deep learning-based single-shot structured illumination microscopy
    Zhang, Qinnan
    Chen, Jiawei
    Li, Jiaosheng
    Bo, En
    Jiang, Heming
    Lu, Xiaoxu
    Zhong, Liyun
    Tian, Jindong
    [J]. OPTICS AND LASERS IN ENGINEERING, 2022, 155
  • [5] Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy
    Cheng, Vi Fei
    Strachan, Megan
    Weiss, Zachary
    Deb, Moniher
    Carone, Dawn
    Ganapati, Vidya
    [J]. OPTICS EXPRESS, 2019, 27 (02) : 644 - 656
  • [6] Single-Shot Ultrafast Pulse Reconstruction with Deep Learning
    Ziv, Ron
    Dikopoltsev, Alex
    Zahavy, Tom
    Rubinstein, Ittai
    Sidorenko, Pavel
    Cohen, Oren
    Segev, Mordechai
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [7] Single-shot autofocusing in light sheet fluorescence microscopy with multiplexed structured illumination and deep learning
    Gan, Yanhong
    Ye, Zitong
    Han, Yubing
    Ma, Ye
    Li, Chuankang
    Liu, Qiulan
    Liu, Wenjie
    Kuang, Cuifang
    Liu, Xu
    [J]. OPTICS AND LASERS IN ENGINEERING, 2023, 168
  • [8] Single-shot microscopic autofocus focusing on image detail features
    Hua, Zhijie
    Zhang, Xu
    Tu, Dawei
    Chen, Jiale
    Qian, Mengting
    [J]. INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING, ICOPEN 2023, 2024, 13069
  • [9] Single-shot complex amplitude demodulation based on deep learning
    Hao, Jianying
    Lin, Xiao
    Lin, Yongkun
    Chen, Ruixian
    Tan, Xiaodi
    Ren, Yuhong
    [J]. OPTICAL MANIPULATION AND STRUCTURED MATERIALS CONFERENCE (OMC 2022), 2022, 12479
  • [10] Coupled metric learning for single-shot versus single-shot person reidentification
    Li, Wei
    Wu, Yang
    Mukunoki, Masayuki
    Minoh, Michihiko
    [J]. OPTICAL ENGINEERING, 2013, 52 (02)