On a class of generalized Takagi functions with linear pathwise quadratic variation

被引:15
|
作者
Schied, Alexander [1 ]
机构
[1] Univ Mannheim, Dept Math, D-68131 Mannheim, Germany
关键词
Generalized Takagi function; Uniform modulus of continuity; Pathwise quadratic variation; Pathwise covariation; Pathwise Ito calculus; Follmer integral; PROBABILISTIC ASPECTS; ARBITRAGE;
D O I
10.1016/j.jmaa.2015.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class X of continuous functions on [0, 1] that is of interest from two different perspectives. First, it is closely related to sets of functions that have been studied as generalizations of the Takagi function. Second, each function in X admits a linear pathwise quadratic variation and can thus serve as an integrator in Follmer's pathwise Ito calculus. We derive several uniform properties of the class X. For instance, we compute the overall pointwise maximum, the uniform maximal oscillation, and the exact uniform modulus of continuity for all functions in X. Furthermore, we give an example of a pair x, y E X for which the quadratic variation of the sum x y does not exist. (C) 2015 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:974 / 990
页数:17
相关论文
共 50 条
  • [1] On pathwise quadratic variation for cadlag functions
    Chiu, Henry
    Cont, Rama
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23 : 1 - 12
  • [2] Constructing functions with prescribed pathwise quadratic variation
    Mishura, Yuliya
    Schied, Alexander
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (01) : 117 - 137
  • [3] Differentiability of the functions of the generalized Takagi Class
    Juan Ferrera
    Javier Gómez Gil
    Revista Matemática Complutense, 2020, 33 : 465 - 493
  • [4] Differentiability of the functions of the generalized Takagi Class
    Ferrera, Juan
    Gomez Gil, Javier
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 465 - 493
  • [5] A characterization of the nowhere differentiable functions in the Generalized Takagi class
    Ferrera, Juan
    Gómez Gil, Javier
    Llorente, Jesús
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 2025, 119 (01)
  • [6] ON GENERALIZED TAKAGI FUNCTIONS
    KONO, N
    ACTA MATHEMATICA HUNGARICA, 1987, 49 (3-4) : 315 - 324
  • [7] A Limit Theorem for Bernoulli Convolutions and the Φ-Variation of Functions in the Takagi Class
    Han, Xiyue
    Schied, Alexander
    Zhang, Zhenyuan
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2853 - 2878
  • [8] GENERALIZED CONVEXITY OF A CERTAIN CLASS OF QUADRATIC-FUNCTIONS
    SHANDOR, K
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1984, (09): : 38 - 43
  • [9] Pathwise integration with respect to paths of finite quadratic variation
    Ananova, Anna
    Cont, Rama
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (06): : 737 - 757
  • [10] Generalized bent functions and class group of imaginary quadratic fields
    Feng, KQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (05): : 562 - 570