Decomposing Gorenstein rings as connected sums

被引:6
|
作者
Ananthnarayan, H. [1 ]
Celikbas, Ela [2 ]
Laxmi, Jai [1 ]
Yang, Zheng [3 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, Maharashtra, India
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Sichuan Univ, Pittsburgh Inst, Chengdu 610207, Sichuan, Peoples R China
关键词
Gorenstein ring; Fibre product; Connected sum; LOCAL-RINGS; SERIES; SOCLE;
D O I
10.1016/j.jalgebra.2019.01.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2012, Ananthnarayan, Avramov and Moore give a new construction of Gorenstein rings from two Gorenstein local rings, called their connected sum. Given a Gorenstein ring, one would like to know whether it decomposes as a connected sum and if so, what are its components. We answer these questions in the Artinian case and investigate conditions on the ring which force it to be indecomposable as a connected sum. We further give a characterization for Gorenstein Artin local rings to be decomposable as connected sums, and as a consequence, obtain results about its Poincare series and minimal number of generators of its defining ideal. Finally, we show that the indecomposable components appearing in the connected sum decomposition are unique up to isomorphism. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:241 / 263
页数:23
相关论文
共 50 条
  • [1] Connected sums of Gorenstein local rings To Gerson Levin, on his seventieth birthday
    Ananthnarayan, H.
    Avramov, Luchezar L.
    Moore, W. Frank
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 667 : 149 - 176
  • [2] Associated Graded Rings and Connected Sums
    H. Ananthnarayan
    Ela Celikbas
    Jai Laxmi
    Zheng Yang
    Czechoslovak Mathematical Journal, 2020, 70 : 261 - 279
  • [3] Associated Graded Rings and Connected Sums
    Ananthnarayan, H.
    Celikbas, Ela
    Laxmi, Jai
    Yang, Zheng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 261 - 279
  • [4] BETTI NUMBERS FOR CONNECTED SUMS OF GRADED GORENSTEIN ARTINIAN ALGEBRAS
    Altafi, Nasrin
    Di Gennaro, Roberta
    Galetto, Federico
    Grate, Sean
    Miro-Roig, Rosa M.
    Nagel, Uwe
    Seceleanu, Alexandra
    Watanabe, Junzo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (02) : 1055 - 1080
  • [5] Connected sums of graded Artinian Gorenstein algebras and Lefschetz properties
    Iarrobino, Anthony
    McDaniel, Chris
    Seceleanu, Alexandra
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (01)
  • [6] GORENSTEIN RINGS
    JOTHILIN.P
    ARCHIV DER MATHEMATIK, 1972, 23 (04) : 398 - &
  • [7] ON GORENSTEIN RINGS
    JENDA, OMG
    MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) : 119 - 122
  • [8] Families of Gorenstein and almost Gorenstein rings
    Barucci, V.
    D'Anna, M.
    Strazzanti, F.
    ARKIV FOR MATEMATIK, 2016, 54 (02): : 321 - 338
  • [9] Gorenstein flatness and injectivity over Gorenstein rings
    WeiLing Song
    ZhaoYong Huang
    Science in China Series A: Mathematics, 2008, 51 : 215 - 218
  • [10] Gorenstein flatness and injectivity over Gorenstein rings
    SONG WeiLing HUANG ZhaoYong~+ Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2008, (02) : 215 - 218