Characterization of non-aflatoxigenic strains of Aspergillus flavus as potential biocontrol agent for the management of aflatoxin contamination in groundnut

被引:16
|
作者
Mallikarjunaiah, Navya Hulikunte [1 ]
Jayapala, Naveen [1 ]
Puttaswamy, Hariprasad [2 ]
Ramachandrappa, Niranjana Siddapura [1 ]
机构
[1] Univ Mysore, Dept Biotechnol, Mysore 570006, Karnataka, India
[2] Indian Inst Technol, Ctr Rural Dev & Technol, New Delhi 110016, India
关键词
PCR; Deletion pattern; Rhizosphere; Biopesticides; BIOLOGICAL-CONTROL; GENETIC DIVERSITY; BIOSYNTHESIS; REDUCTION; B-1;
D O I
10.1016/j.micpath.2016.11.007
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
In the present study, nine non-aflatoxigenic Aspergillus flavus strains were evaluated for their potential to reduce A. flavus infection and aflatoxin contamination in groundnut. Genetic characterization of these strains revealed six different deletion patterns (A-F) for thirteen examined genes from the aflatoxin biosynthesis pathway. Strain AFGS5 recorded maximum number of gene deletion (F) which included 12 out of 13 tested genes. Our findings indicated that aflR was the most frequently absent gene among the observed deletion patterns. A dendrogram inferred from combining random amplified polymorphic DNA and microsatellite data showed three of the non-aflatoxigenic strains segregating from other sampled isolates (aflatoxigenic and non-aflatoxigenic) tested. Greenhouse experiments, involving non-aflatoxigenic strains as biocontrol agents resulted in two strains, AFGS5 and AFGS12, which significantly reduced the population of aflatoxigenic fungi and the level of total aflatoxins in the rhizosphere/geocarposphere of soil samples as well as in groundnut seeds. Based on our findings, the use of these native non-aflatoxigenic strains; AFGS5 or AFGS12 in particular, as biopesticides could offer efficacious mitigation of aflatoxin contamination. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 50 条
  • [1] Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates
    Abbas, Hamed K.
    Zablotowicz, Robert M.
    Bruns, H. Arnold
    Abel, Craig A.
    BIOCONTROL SCIENCE AND TECHNOLOGY, 2006, 16 (05) : 437 - 449
  • [2] Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina
    Alaniz Zanon, Maria Silvina
    Gustavo Barros, German
    Noemi Chulze, Sofia
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2016, 231 : 63 - 68
  • [3] Mechanism of inhibition of aflatoxin synthesis by non-aflatoxigenic strains of Aspergillus flavus
    Rao, K. Raksha
    Vipin, A. V.
    Venkateswaran, G.
    MICROBIAL PATHOGENESIS, 2020, 147
  • [4] Non-Aflatoxigenic Aspergillus flavus: A Promising Biological Control Agent against Aflatoxin Contamination of Corn
    Lavkor, Isilay
    Ay, Tahsin
    Sobucovali, Suat
    Var, Isil
    Saghrouchni, Hamza
    Salamatullah, Ahmad Mohammad
    Mekonnen, Amare Bitew
    ACS OMEGA, 2023, 8 (19): : 16779 - 16788
  • [5] Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations
    Ehrlich, Kenneth C.
    FRONTIERS IN MICROBIOLOGY, 2014, 5
  • [6] Application of Non-Aflatoxigenic Aspergillus flavus for the Biological Control of Aflatoxin Contamination in China
    Zhang, Wan
    Dou, Jianpeng
    Wu, Zidan
    Li, Qiu
    Wang, Shanshan
    Xu, Huiru
    Wu, Wenfu
    Sun, Changpo
    TOXINS, 2022, 14 (10)
  • [7] Biocontrol of Aflatoxin-Producing Aspergillus flavus ATCC 22546 by a Non-Aflatoxigenic Aspergillus flavus ATCC 9643
    Jung, Kwang-Soo
    Kim, Hyeong-Mi
    Lee, Jieun
    Ganbat, Dariimaa
    Lee, Sung-Eun
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [8] Assessment of the Potential of a Native Non-Aflatoxigenic Aspergillus flavus Isolate to Reduce Aflatoxin Contamination in Dairy Feed
    Janet Rangel-Munoz, Erika
    Gerardo Valdivia-Flores, Arturo
    Hernandez-Delgado, Sanjuana
    Cruz-Vazquez, Carlos
    Carolina de-Luna-Lopez, Maria
    Quezada-Tristan, Teodulo
    Ortiz-Martinez, Raul
    Mayek-Perez, Netzahualcoyotl
    TOXINS, 2022, 14 (07)
  • [9] Effect of non-aflatoxigenic strains of Aspergillus flavus on aflatoxin contamination of pre-harvest peanuts in fields in China
    Liying Yan
    Wanduo Song
    Yuning Chen
    Yanping Kang
    Yong Lei
    Dongxin Huai
    Zhihui Wang
    Xin Wang
    Boshou Liao
    OilCropScience, 2021, 6 (02) : 81 - 86
  • [10] Rapid isolation of non-aflatoxigenic Aspergillus flavus strains
    Zhang, W.
    Chang, X.
    Wu, Z.
    Dou, J.
    Yin, Y.
    Sun, C.
    Wu, W.
    WORLD MYCOTOXIN JOURNAL, 2020, 13 (02) : 277 - 286