Short-time existence of the α-Dirac-harmonic map flow and applications

被引:7
|
作者
Jost, Juergen [1 ]
Zhu, Jingyong [1 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
关键词
Dirac-harmonic map; alpha-Dirac-harmonic map; alpha-Dirac-harmonic map flow; existence; minimal kernel;
D O I
10.1080/03605302.2020.1843490
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the general existence theory of Dirac-harmonic maps from closed surfaces via the heat flow for alpha-Dirac-harmonic maps and blow-up analysis. More precisely, given any initial map along which the Dirac operator has nontrivial minimal kernel, we first prove the short time existence of the heat flow for alpha-Dirac-harmonic maps. The obstacle to the global existence is the singular time when the kernel of the Dirac operator no longer stays minimal along the flow. In this case, the kernel may not be continuous even if the map is smooth with respect to time. To overcome this issue, we use the analyticity of the target manifold to obtain the density of the maps along which the Dirac operator has minimal kernel in the homotopy class of the given initial map. Then, when we arrive at the singular time, this density allows us to pick another map which has lower energy to restart the flow. Thus, we get a flow which may not be continuous at a set of isolated points. Furthermore, with the help of small energy regularity and blow-up analysis, we finally get the existence of nontrivial alpha-Dirac-harmonic maps (alpha > 1) from closed surfaces. Moreover, if the target manifold does not admit any nontrivial harmonic sphere, then the map part stays in the same homotopy class as the given initial map.
引用
收藏
页码:442 / 469
页数:28
相关论文
共 50 条