Effects of the electron energy distribution function on modeled x-ray spectra

被引:0
|
作者
Hansen, SB [1 ]
Shlyaptseva, AS
机构
[1] Univ Nevada, Phys Dept 220, Reno, NV 89557 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 03期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents the results of a broad investigation into the effects of the electron energy distribution function on the predictions of nonlocal thermodynamic equilibrium collisional-radiative atomic kinetics models. The effects of non-Maxwellian and suprathermal ("hot") electron distributions on collisional rates (including three-body recombination) are studied. It is shown that most collisional rates are fairly insensitive to the functional form and the characteristic (central or average) energy of the electron distribution function as long as the characteristic energy is larger than the threshold energy for the collisional process. Collisional excitation and ionization rates are, however, highly sensitive to the number of hot electrons. This permits the development of robust spectroscopic diagnostics that can be used to characterize the electron density, bulk electron temperature, and hot electron fraction of plasmas with nonequilibrium electron distribution functions. Hot electrons are shown to increase and spread out plasma charge state distributions, amplify the intensities of emission lines fed by direct collisional excitation and radiative cascades, and alter the structure of satellite features in both K- and L-shell spectra. The characteristic energy, functional form, and spatial properties of hot electron distributions in plasmas are open to characterization through their effects on high-energy continuum and line emission and on the polarization of spectral lines.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Improving the energy resolution of X-ray and electron energy-loss spectra
    Egerton, R. F.
    Qian, H.
    Malac, M.
    MICRON, 2006, 37 (04) : 310 - 315
  • [2] Effects of intense electron correlations on x-ray and x-ray electron copper spectra of high-temperature superconductors
    Ovchinnikov, SG
    Avramov, PV
    FIZIKA TVERDOGO TELA, 1995, 37 (09): : 2559 - 2567
  • [3] BEYOND THE PAIR DISTRIBUTION FUNCTION IN X-RAY ABSORPTION-SPECTRA
    BENFATTO, M
    NATOLI, CR
    JOURNAL DE PHYSIQUE, 1987, 48 (C-9): : 1077 - 1084
  • [4] Concerning the procedure of recovering the electron energy distribution function from the soft X-ray spectrum
    Grebenshchikov, S. E.
    Vafin, I. Yu.
    Meshcheryakov, A. I.
    Nechaev, Yu. I.
    PLASMA PHYSICS REPORTS, 2008, 34 (12) : 1016 - 1021
  • [5] Concerning the procedure of recovering the electron energy distribution function from the soft X-ray spectrum
    S. E. Grebenshchikov
    I. Yu. Vafin
    A. I. Meshcheryakov
    Yu. I. Nechaev
    Plasma Physics Reports, 2008, 34 : 1016 - 1021
  • [6] Reconstruction algorithm for the runaway electron energy distribution function of the ITER hard x-ray monitor
    Patel, Ansh
    Pandya, Santosh P.
    Shevelev, Alexander E.
    Khilkevitch, E. M.
    Iliasova, Margarita
    O'Connor, Richard
    Tieulent, Raphael
    Barnsley, Robin
    Mokeev, Alexander N.
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [7] Study on X-ray spectra construction method with complex energy distribution
    Ma, Ge
    Hei, Dong-Wei
    Zhou, Hai-Sheng
    Luo, Jian-Hui
    Sun, Feng-Rong
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2014, 48 (07): : 1281 - 1285
  • [8] SPECTRAL ENERGY DISTRIBUTION IN X-RAY BEAM AS A FUNCTION OF WAVELENGTH
    SPECHT, RD
    GREENFIELD, MA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1953, 43 (01) : 60 - 60
  • [9] SPECTRAL ENERGY DISTRIBUTION IN X-RAY BEAM AS A FUNCTION OF WAVELENGTH
    GREENFIELD, MA
    SPECHT, RD
    KRATZ, PM
    HAND, K
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1952, 42 (01) : 6 - 11
  • [10] An X-ray fluorescence depth distribution function for electron beam microanalysis
    Mikheev N.N.
    Stepovich M.A.
    Shirokova E.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2010, 74 (07) : 1002 - 1006