Deep Conversational Recommender Systems: Challenges and Opportunities

被引:1
|
作者
Dai Hoang Tran [1 ]
Sheng, Quan Z. [1 ,2 ]
Zhang, Wei Emma [3 ]
Hamad, Salma Abdalla [1 ]
Khoa, Nguyen Lu Dang [4 ]
Tran, Nguyen H. [5 ]
机构
[1] Macquarie Univ, Sydney, NSW, Australia
[2] Macquarie Univ, Dept Comp, Sydney, NSW, Australia
[3] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia
[4] CSIRO, Data61, Analyt & Decis Sci Program, Sydney, NSW, Australia
[5] Univ Sydney, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/MC.2020.3045426
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike traditional recommender systems, the conversational recommender system (CRS) models a user's preferences through interactive dialogue conversations. Recently, deep learning approaches have been applied to CRSs, producing fruitful results. We discuss the development of deep CRSs and future research directions. © 1970-2012 IEEE.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [1] Advances and challenges in conversational recommender systems: A survey
    Gao, Chongming
    Lei, Wenqiang
    He, Xiangnan
    de Rijke, Maarten
    Chua, Tat-Seng
    AI OPEN, 2021, 2 : 100 - 126
  • [2] A Survey of Multimedia Recommender Systems: Challenges and Opportunities
    Ge M.
    Persia F.
    1600, World Scientific (11): : 411 - 428
  • [3] Recommender Systems over Wireless: Challenges and Opportunities
    Song, Linqi
    Fragouli, Christina
    Shah, Devavrat
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 420 - 424
  • [4] Subjective Attributes in Conversational Recommendation Systems: Challenges and Opportunities
    Radlinski, Filip
    Boutilier, Craig
    Ramachandran, Deepak
    Vendrov, Ivan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12287 - 12293
  • [5] On the Opportunities and Challenges of Offline Reinforcement Learning for Recommender Systems
    Chen, Xiaocong
    Wang, Siyu
    McAuley, Julian
    Jannach, Dietmar
    Yao, Lina
    ACM Transactions on Information Systems, 2024, 42 (06)
  • [6] Towards Conversational Recommender Systems
    Christakopoulou, Konstantina
    Radlinski, Filip
    Hofmann, Katja
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 815 - 824
  • [7] Customized Conversational Recommender Systems
    Li, Shuokai
    Zhu, Yongchun
    Xie, Ruobing
    Tang, Zhenwei
    Zhang, Zhao
    Zhuang, Fuzhen
    He, Qing
    Xiong, Hui
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 740 - 756
  • [8] A Survey on Conversational Recommender Systems
    Jannach, Dietmar
    Manzoor, Ahtsham
    Cai, Wanling
    Chen, Li
    ACM COMPUTING SURVEYS, 2021, 54 (05)
  • [9] Conversational Group Recommender Systems
    Thuy Ngoc Nguyen
    PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), 2017, : 331 - 334
  • [10] Conversational Agents for Recommender Systems
    Iovine, Andrea
    RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 758 - 763