Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes

被引:47
|
作者
Boivin, Vincent [1 ]
Deschamps-Francoeur, Gabrielle [1 ]
Couture, Sonia [2 ]
Nottingham, Ryan M. [3 ,4 ]
Bouchard-Bourelle, Philia [1 ]
Lambowitz, Alan M. [3 ,4 ]
Scott, Michelle S. [1 ]
Abou-Elela, Sherif [2 ]
机构
[1] Univ Sherbrooke, Fac Med & Sci Sante, Dept Biochim, Sherbrooke, PQ J1E 4K8, Canada
[2] Univ Sherbrooke, Fac Med & Sci Sante, Dept Microbiol & Infectiol, Sherbrooke, PQ J1E 4K8, Canada
[3] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
high-throughput sequencing; noncoding RNA; snoRNA; RNA detection; thermostable group II intron reverse transcriptase; transcriptome analysis; SIGNAL RECOGNITION PARTICLE; INTRON REVERSE-TRANSCRIPTASE; TIME QUANTITATIVE PCR; SMALL NUCLEOLAR RNAS; DROPLET DIGITAL PCR; RIBOSOMAL-RNA; OVARIAN-CARCINOMA; CANCER; SEQ; DATABASE;
D O I
10.1261/rna.064493.117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. Structured noncoding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing.
引用
收藏
页码:950 / 965
页数:16
相关论文
共 49 条
  • [1] RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes
    Chen, Bei Jun
    Ueberham, Uwe
    Mills, James D.
    Kirazov, Ludmil
    Kirazov, Evgeni
    Knobloch, Mara
    Bochmann, Jana
    Jendrek, Renate
    Takenaka, Konii
    Bliim, Nicola
    Arendt, Thomas
    Janitz, Michael
    NEUROBIOLOGY OF AGING, 2017, 56 : 67 - 77
  • [2] Integrative classification of human coding and noncoding genes through RNA metabolism profiles
    Neelanjan Mukherjee
    Lorenzo Calviello
    Antje Hirsekorn
    Stefano de Pretis
    Mattia Pelizzola
    Uwe Ohler
    Nature Structural & Molecular Biology, 2017, 24 : 86 - 96
  • [3] Integrative classification of human coding and noncoding genes through RNA metabolism profiles
    Multherjee, Neelanjan
    Calviello, Lorenzo
    Hirsekorn, Antje
    de Pretis, Stefano
    Pelizzola, Mattia
    Ohler, Uwe
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (01) : 86 - 96
  • [4] Next-generation sequencing reveals differentially expressed small noncoding RNAs in uterine leiomyoma
    Chuang, Tsai-Der
    Xie, Yeming
    Yan, Wei
    Khorram, Omid
    FERTILITY AND STERILITY, 2018, 109 (05) : 919 - 929
  • [5] Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans
    Mitchell, Khadijah A.
    Zingone, Adriana
    Toulabi, Leila
    Boeckelman, Jacob
    Ryan, Brid M.
    CLINICAL CANCER RESEARCH, 2017, 23 (23) : 7412 - 7425
  • [6] Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing
    Ding, Xiangxiang
    Zhang, Shuai
    Li, Xiao
    Feng, Changjiang
    Huang, Qi
    Wang, Shaodong
    Wang, Siwei
    Xia, Wenjia
    Yang, Fan
    Yin, Rong
    Xu, Lin
    Qiu, Mantang
    Li, Ming
    Wang, Jun
    FEBS OPEN BIO, 2018, 8 (04): : 544 - 555
  • [7] Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer
    Li, Ming
    Qiu, Mantang
    Xu, Youtao
    Mao, Qixing
    Wang, Jie
    Dong, Gaochao
    Xia, Wenjia
    Yin, Rong
    Xu, Lin
    TUMOR BIOLOGY, 2015, 36 (12) : 9969 - 9978
  • [8] Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection
    Pineda, Silvia
    Sur, Swastika
    Sigdel, Tara
    Nguyen, Mark
    Crespo, Elena
    Torija, Alba
    Meneghini, Maria
    Goma, Montse
    Sirota, Marina
    Bestard, Oriol
    Sarwal, Minnie M.
    KIDNEY INTERNATIONAL REPORTS, 2020, 5 (10): : 1706 - 1721
  • [9] Transcriptome Sequencing Reveals PCAT5 as a Novel ERG-Regulated Long Noncoding RNA in Prostate Cancer
    Ylipaa, Antti
    Kivinummi, Kati
    Kohvakka, Annika
    Annala, Matti
    Latonen, Leena
    Scaravilli, Mauro
    Kartasalo, Kimmo
    Leppanen, Simo-Pekka
    Karakurt, Serdar
    Seppala, Janne
    Yli-Harja, Olli
    Tammela, Teuvo L. J.
    Zhang, Wei
    Visakorpi, Tapio
    Nykter, Matti
    CANCER RESEARCH, 2015, 75 (19) : 4026 - 4031
  • [10] Human 45,X Fibroblast Transcriptome Reveals Distinct Differentially Expressed Genes Including Long Noncoding RNAs Potentially Associated with the Pathophysiology of Turner Syndrome
    Rajpathak, Shriram N.
    Vellarikkal, Shamsudheen Karuthedath
    Patowary, Ashok
    Scaria, Vinod
    Sivasubbu, Sridhar
    Deobagkar, Deepti D.
    PLOS ONE, 2014, 9 (06):