PARTIAL HYPERBOLICITY AND SPECIFICATION

被引:12
|
作者
Sumi, Naoya [1 ]
Varandas, Paulo [2 ]
Yamamoto, Kenichiro [3 ]
机构
[1] Kumamoto Univ, Fac Sci, Dept Math, 2-39-1 Kurokami, Kumamoto, Kumamoto 8608555, Japan
[2] Univ Fed Bahia, Dept Matemat, Ademar Barros S-N, BR-20170110 Sulvador, Brazil
[3] Nagaoka Univ Technol, Dept Gen Educ, Niigata 9402188, Japan
关键词
Specification; partially hyperbolic; robustly non-hyperbolic transitive; DYNAMICAL-SYSTEMS; TOPOLOGICAL-ENTROPY; GLOBAL VIEW; PROPERTY; DIFFEOMORPHISMS; MANIFOLDS; SETS; CONJECTURE; STABILITY; ROBUST;
D O I
10.1090/proc/12830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the specification property for partially hyperbolic dynamical systems. In particular, we show that if a partially hyperbolic diffeomorphism has two saddles with different indices, and the stable manifold of one of these saddles coincides with the strongly stable leaf, then it does not satisfy the specification property.
引用
下载
收藏
页码:1161 / 1170
页数:10
相关论文
共 50 条
  • [1] Specification and partial hyperbolicity for flows
    Sumi, Naoya
    Varandas, Paulo
    Yamamoto, Kenichiro
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (04): : 501 - 524
  • [2] PARTIAL HYPERBOLICITY AND CENTRAL SHADOWING
    Kryzhevich, Sergey
    Tikhomirov, Sergey
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (07) : 2901 - 2909
  • [3] PARTIAL HYPERBOLICITY AND PARTIAL GEVREY-CLASSES
    PERSSON, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 42 (03) : 283 - 324
  • [4] Partial hyperbolicity and classification: a survey
    Hammerlindl, Andy
    Potrie, Rafael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 401 - 443
  • [5] DETERMINATION OF HYPERBOLICITY BY PARTIAL PROLONGATIONS
    JOHNSON, HH
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 30 (03) : 679 - &
  • [6] Partial hyperbolicity and homoclinic tangencies
    Crovisier, Sylvain
    Sambarino, Martin
    Yang, Dawei
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (01) : 1 - 49
  • [7] Partial hyperbolicity and robust transitivity
    Díaz, LJ
    Pujals, ER
    Ures, R
    ACTA MATHEMATICA, 1999, 183 (01) : 1 - 43
  • [8] Partial hyperbolicity for symplectic diffeomorphisms
    Horita, Vanderlei
    Tahzibi, Ali
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 641 - 661
  • [9] Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon
    Cresson, Jacky
    Guillet, Christophe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (09) : 2123 - 2132
  • [10] Partial hyperbolicity and ergodicity in dimension three
    Hertz, Federico Rodriguez
    Hertz, Maria Alejandra Rodriguez
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2008, 2 (02) : 187 - 208