Optimal Two-Weight Codes From Trace Codes Over F2 + uF2

被引:58
|
作者
Shi, Minjia [1 ,2 ,3 ]
Liu, Yan [3 ]
Sole, Patrick [4 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230039, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[3] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[4] Univ Paris 08, CNRS LAGA, F-93526 St Denis, France
关键词
Two-weight codes; codes over rings; Griesmer bound; secret sharing schemes;
D O I
10.1109/LCOMM.2016.2614934
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We construct an infinite family of two-Lee-weight codes over the ring F-2 + uF(2). These codes are defined as trace codes. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. By Gray mapping, we obtain an infinite family of abelian binary two-weight codes. They are shown to be optimal by application of the Griesmer bound. An application to secret sharing schemes is given.
引用
收藏
页码:2346 / 2349
页数:4
相关论文
共 50 条
  • [1] Constacyclic codes over F2 + uF2
    Abualrub, Taher
    Siap, Irfan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05): : 520 - 529
  • [2] Duadic Codes over F2 + uF2
    San Ling
    Patrick Solé
    Applicable Algebra in Engineering, Communication and Computing, 2001, 12 : 365 - 379
  • [3] On cyclic DNA codes over F2 + uF2
    Liang J.
    Wang L.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 81 - 91
  • [4] Decoding of cyclic codes over F2 + uF2
    RMIT Univ, Melbourne, Australia
    IEEE Trans. Inf. Theory, 6 (2148-2157):
  • [5] Cyclic codes over M2(F2 + uF2)
    Luo, Rong
    Parampalli, Udaya
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (06): : 1109 - 1117
  • [6] CONSTRUCTION OF SELF-DUAL CODES OVER F2 + uF2
    Han, Sungyu
    Lee, Heisook
    Lee, Yoonjin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) : 135 - 143
  • [7] A MACWILLIAMS TYPE IDENTITY ON LEE WEIGHT FOR LINEAR CODES OVER F2 + uF2*
    Zhu, Shixin
    Tang, Yongsheng
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (01) : 186 - 194
  • [8] Construction of cyclic codes over F2 + uF2 for DNA computing
    Guenda, Kenza
    Gulliver, T. Aaron
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (06) : 445 - 459
  • [9] Cyclic codes over the ring F2 + uF2 + vF2
    Samei, Karim
    Alimoradi, Mohammad Reza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2489 - 2502
  • [10] Constacyclic and cyclic codes over F2 + uF2 + u2F2
    Qian, Jian-Fa
    Zhang, Li-Na
    Zhu, Shi-Xin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (06) : 1863 - 1865