On potentially K 5-H-graphic sequences

被引:9
|
作者
Hu, Lili [1 ]
Lai, Chunhui [1 ]
Wang, Ping [2 ]
机构
[1] Zhangzhou Teachers Coll, Dept Math, Zhangzhou 363000, Peoples R China
[2] St Francis Xavier Univ, Dept Math Stats & Comp Sci, Antigonish, NS B2G 2W5, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
graph; degree sequence; potentially K-5 - H-graphic sequence; EXTREMAL PROBLEM; GRAPHIC SEQUENCE;
D O I
10.1007/s10587-009-0012-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K (m) -H be the graph obtained from K (m) by removing the edges set E(H) of H where H is a subgraph of K (m) . In this paper, we characterize the potentially K (5)-P (4) and K (5)-Y (4)-graphic sequences where Y (4) is a tree on 5 vertices and 3 leaves.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [1] On potentially K5-H-graphic sequences
    Lili Hu
    Chunhui Lai
    Ping Wang
    Czechoslovak Mathematical Journal, 2009, 59 : 173 - 182
  • [2] On Potentially K6-C5 graphic Sequences
    Xu, Zhenghua
    Lai, Chunhui
    UTILITAS MATHEMATICA, 2011, 86 : 3 - 22
  • [3] On Potentially K5-E3-graphic Sequences
    Hu, Lili
    Lai, Chunhui
    ARS COMBINATORIA, 2011, 101 : 359 - 383
  • [4] On potentially H-graphic sequences
    Meng-Xiao Yin
    Jian-Hua Yin
    Czechoslovak Mathematical Journal, 2007, 57 : 705 - 724
  • [5] Potentially H-graphic sequences
    Yin, Meng-Xiao
    Yin, Jian-Hua
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (02) : 705 - 724
  • [6] On Potentially (K5 - C4)-graphic Sequences
    Hu, Lili
    Lai, Chunhui
    ARS COMBINATORIA, 2011, 99 : 175 - 192
  • [7] On potentially K6-3K2-graphic sequences
    Chen, Gang
    ARS COMBINATORIA, 2014, 116 : 3 - 21
  • [8] A Characterization On Potentially K2,5-graphic Sequences
    Hu, Lili
    Lai, Chunhui
    ARS COMBINATORIA, 2014, 116 : 417 - 431
  • [9] A GENERAL LOWER BOUND FOR POTENTIALLY H-GRAPHIC SEQUENCES
    Ferrara, Michael J.
    Schmitt, John
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 517 - 526
  • [10] On the approximate shape of degree sequences that are not potentially H-graphic
    Erbes, Catherine
    Ferrara, Michael
    Martin, Ryan R.
    Wenger, Paul S.
    JOURNAL OF COMBINATORICS, 2019, 10 (02) : 339 - 363