A common characterization of avoids, non-singular quadrics and non-singular Hermitian varieties in PG(d, n)

被引:0
|
作者
Biondi, P [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, I-80126 Naples, Italy
关键词
ovoid; quadric; Hermitian variety;
D O I
10.36045/bbms/1103055717
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A property is given which characterizes the ovoids, the Iron-singular quadrics and the non-singular Hermitian varieties of a projective space PG(d, n), d odd; whereas, the same property is shown to be typical of the Hermitian arcs and of the non-singular Hermitian varieties if d is even.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [1] A Common Characterization of Ovoids and Non-singular Ruled Quadrics in PG(d, n)
    Paola Biondi
    Geometriae Dedicata, 1998, 71 : 327 - 333
  • [2] On non-singular Hermitian varieties of PG(4, q2)
    Aguglia, Angela
    Pavese, Francesco
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [3] Maximal partial line spreads of non-singular quadrics
    S. Rottey
    L. Storme
    Designs, Codes and Cryptography, 2014, 72 : 33 - 51
  • [4] Maximal partial line spreads of non-singular quadrics
    Rottey, S.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) : 33 - 51
  • [5] The small weight codewords of the functional codes associated to non-singular Hermitian varieties
    F. A. B. Edoukou
    A. Hallez
    F. Rodier
    L. Storme
    Designs, Codes and Cryptography, 2010, 56 : 219 - 233
  • [6] The small weight codewords of the functional codes associated to non-singular Hermitian varieties
    Edoukou, F. A. B.
    Hallez, A.
    Rodier, F.
    Storme, L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 56 (2-3) : 219 - 233
  • [7] On the canonical form of a non-singular pencil of Hermitian matrices
    Trott, GR
    AMERICAN JOURNAL OF MATHEMATICS, 1934, 56 : 359 - 371
  • [8] Non-Singular graphs with a Singular Deck
    Farrugia, Alexander
    Gauci, John Baptist
    Sciriha, Irene
    DISCRETE APPLIED MATHEMATICS, 2016, 202 : 50 - 57
  • [9] Partial flocks of non-singular quadrics in PG(2r+1,q)
    Brown, MR
    O'Keefe, CM
    Tonesi, C
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2004, 20 (03) : 359 - 370
  • [10] Partial Flocks of Non-Singular Quadrics in PG(2r + 1, q)
    Matthew R. Brown
    Christine M. O'Keefe
    Cristina Tonesi
    Journal of Algebraic Combinatorics, 2004, 20 : 359 - 370