Effect of heat treatment on fatigue crack initiation of laser powder bed fusion stainless steel 316L

被引:15
|
作者
Zhang, Meng [1 ]
Sun, Chen-Nan [2 ]
Zhang, Xiang [3 ]
Goh, Phoi Chin [4 ]
Wei, Jun [2 ]
Hardacre, David [4 ]
Li, Hua [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore Ctr 3D Printing, 50 Nanyang Ave, Singapore 639798, Singapore
[2] ASTAR, Singapore Inst Mfg Technol, 73 Nanyang Dr, Singapore 637662, Singapore
[3] Coventry Univ, Fac Engn Environm & Comp, Coventry CV1 5FB, W Midlands, England
[4] Lloyds Register Global Technol Ctr, 1 Fusionopolis Pl,09-11 Galaxis, Singapore 13852, Singapore
关键词
RESIDUAL-STRESS; PROCESSING PARAMETERS; MECHANICAL-PROPERTIES; BEHAVIOR; MICROSTRUCTURE; METALS; SLM;
D O I
10.1051/matecconf/201816522006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Laser powder bed fusion (L-PBF) is an emerging additive manufacturing technique for building structural components. L-PBF processing defects, such as lack of fusion pores, promote fatigue crack initiation and shorten the fatigue life. With well-controlled processing, critical pores can be avoided such that the microstructure-driven intergranular crack initiation mode becomes operative. In this work, the fatigue crack initiation behaviours of as-built and solution annealed L-PBF stainless steel 316L were studied. Crack initiation of the as-built samples is driven by de-bonding of the dendritic grain boundaries. High temperature annealing results in the formation of thermally-induced defects, possibly via the reheat cracking mechanism and the nucleation of pre-existing gas pores. As heat treating could have led to recrystallization and annihilation of the original grain boundary defects, the thermally-induced defects became the new sites for crack initiation. In addition, heat treatment incurred significant reduction in yield strength, such that the interaction of fatigue and ratcheting strain accumulation dominated the deformation behaviour of the material. The resulting fatigue strength in the finite life regime was reduced by about 13% but the fatigue endurance limit was not affected.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Effect of Heat Treatment on Fatigue Performance of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Li, Zhehan
    Xie, Deqiao
    Zhou, Kai
    Naqvi, Syed Mesum Raza
    Wang, Dongsheng
    Zhao, Jianfeng
    Shen, Lida
    Tian, Zongjun
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [2] Heat Treatment Effect on the Corrosion Resistance of 316L Stainless Steel Produced by Laser Powder Bed Fusion
    Sangoi, Kevin
    Nadimi, Mahdi
    Song, Jie
    Fu, Yao
    METALS, 2025, 15 (01)
  • [3] Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Chengsong
    Wang, Yong
    Zhang, Hua
    Ni, Hongwei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3896 - 3912
  • [4] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [5] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54
  • [6] Fatigue behavior of stainless steel 316L microstruts fabricated by laser powder bed fusion
    Ghosh, Abhi
    Kumar, Amit
    Harris, Adrian
    Kietzig, Anne-Marie
    Brochu, Mathieu
    MATERIALIA, 2022, 26
  • [7] Effect of scanning speed on fatigue behavior of 316L stainless steel fabricated by laser powder bed fusion
    Cao, Yinfeng
    Moumni, Ziad
    Zhu, Jihong
    Gu, Xiaojun
    Zhang, Yahui
    Zhai, Xingyue
    Zhang, Weihong
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 319
  • [8] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [9] A multi-scale experimental investigation for fatigue limit and fatigue crack initiation behavior of powder bed fusion-laser beam 316L stainless steel
    Zhu, Wen
    Moumni, Ziad
    Zhu, Jihong
    Zhang, Yahui
    Li, Shaoying
    Zhang, Weihong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 866
  • [10] Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
    Elangeswaran, Chola
    Cutolo, Antonio
    Muralidharan, Gokula Krishna
    de Formanoir, Charlotte
    Berto, Filippo
    Vanmeensel, Kim
    Van Hooreweder, Brecht
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 31 - 39