DIMENSION REDUCTION TECHNIQUES FOR ACCESSING CHINESE READABILITY

被引:0
|
作者
Chen, Yaw-Huei [1 ]
Lin, Ting-Chia [1 ]
机构
[1] Natl Chiayi Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
关键词
Feature selection; Feature extraction; Machine learning; Classification; Chinese readability;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning-based techniques have been used to assess document readability in recent studies. One of the important issues of machine learning-based text classification techniques is to reduce the dimension of the document vectors. Different feature selection and feature extraction methods such as mutual information, chi-square test, information gain, PCA, and LSA are compared for assessing Chinese readability. We also compare classification techniques SVM and LDA. The experimental results indicate that the combination of chi-square feature selection method and SVM performs well.
引用
收藏
页码:434 / 438
页数:5
相关论文
共 50 条
  • [1] REDUCTION TECHNIQUES FOR THE FINITISTIC DIMENSION
    Green, Edward L.
    Psaroudakis, Chrysostomos
    Solberg, Oyvind
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (10) : 6839 - 6879
  • [2] Dimension reduction techniques for conditional expectiles
    Christou, Eliana
    [J]. STATISTICS, 2023, 57 (04) : 960 - 985
  • [3] Comparing dimension reduction techniques for document clustering
    Tang, B
    Shepherd, M
    Heywood, MI
    Luo, X
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, 3501 : 292 - 296
  • [4] Toward a Quantitative Survey of Dimension Reduction Techniques
    Espadoto, Mateus
    Martins, Rafael M.
    Kerren, Andreas
    Hirata, Nina S. T.
    Telea, Alexandru C.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (03) : 2153 - 2173
  • [5] Dimension Reduction Techniques for Market Basket Analysis
    Anbarasi
    Srinivas, D. Sathya
    Vivekanandan, K.
    [J]. INFORMATION AND ELECTRONICS ENGINEERING, 2011, 6 : 245 - 247
  • [6] Effective Dimension Reduction Techniques for Text Documents
    Ponmuthuramalingam, P.
    Devi, T.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2010, 10 (07): : 101 - 109
  • [7] Dimension reduction techniques: Current status and perspectives
    Vachharajani, Bhasha
    Pandya, Dishant
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 62 (P13) : 7024 - 7027
  • [8] Forecast combination through dimension reduction techniques
    Poncela, Pilar
    Rodriguez, Julio
    Sanchez-Mangas, Rock
    Senra, Eva
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (02) : 224 - 237
  • [9] Dimension Reduction Techniques for Signal Separation Algorithms
    Abouzid, Houda
    Chakkor, Otman
    [J]. BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 326 - 340
  • [10] Dimension Reduction Techniques for Distributional Symbolic Data
    Verde, Rosanna
    Irpino, Antonio
    Balzanella, Antonio
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (02) : 344 - 355