Linear response within the projector-based renormalization method: many-body corrections beyond the random phase approximation

被引:1
|
作者
Van-Nham Phan [1 ]
Fehske, Holger [2 ]
Becker, Klaus W. [3 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Danang, Vietnam
[2] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
[3] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 2014年 / 87卷 / 03期
关键词
HUBBARD-MODEL; FERROMAGNETISM; DYNAMICS; SPIN;
D O I
10.1140/epjb/e2014-50028-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.
引用
收藏
页数:17
相关论文
共 17 条
  • [1] Linear response within the projector-based renormalization method: many-body corrections beyond the random phase approximation
    Van-Nham Phan
    Holger Fehske
    Klaus W. Becker
    The European Physical Journal B, 2014, 87
  • [2] Screened Exchange Corrections to the Random Phase Approximation from Many-Body Perturbation Theory
    Hummel, Felix
    Grueneis, Andreas
    Kresse, Georg
    Ziesche, Paul
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) : 3223 - 3236
  • [3] EXTENSION OF RANDOM PHASE APPROXIMATION IN MANY-BODY THEORY
    KUBAREV, SI
    PHYSICS LETTERS A, 1974, A 49 (01) : 15 - 16
  • [5] Random Phase Approximation Applied to Many-Body Noncovalent Systems
    Modrzejewski, Marcin
    Yourdkhani, Sirous
    Klimess, Jfri
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (01) : 427 - 442
  • [6] Communication: Random phase approximation renormalized many-body perturbation theory
    Bates, Jefferson E.
    Furche, Filipp
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (17):
  • [7] Self-consistent linear response approximation for quantum many-body systems
    Toyoda, T
    PHYSICA A, 1998, 253 (1-4): : 498 - 506
  • [8] Self-consistent linear response approximation for quantum many-body systems
    Wakayama, S
    Toyada, T
    SLOW DYNAMICS IN COMPLEX SYSTEMS, 1999, 469 : 691 - 692
  • [9] Beyond-mean-field corrections within the second random-phase approximation
    Grasso, M.
    Gambacurta, D.
    Engel, J.
    XXI INTERNATIONAL SCHOOL ON NUCLEAR PHYSICS, NEUTRON PHYSICS AND APPLICATIONS & INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEI (ISEN-2015), 2016, 724
  • [10] Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage
    Modrzejewski, Marcin
    Yourdkhani, Sirous
    Smiga, Szymon
    Klimes, Jiri
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (02) : 804 - 817