Structural basis of the adaptive molecular recognition by MMP9

被引:106
|
作者
Cha, HJ
Kopetzki, E
Huber, R
Lanzendörfer, M
Brandstetter, H [1 ]
机构
[1] Max Planck Inst Biochem, Abt Struckturforsch, D-82152 Martinsried, Germany
[2] Roche Diagnost GmbH, Pharma Res, D-82372 Penzberg, Germany
关键词
activity regulation; beta-propeller; hemopexin; induced fit; MMP9;
D O I
10.1016/S0022-2836(02)00558-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1065 / 1079
页数:15
相关论文
共 50 条
  • [1] Structural insights into the binding of MMP9 inhibitors
    Tandon, Arpit
    Sinha, Siddharth
    [J]. BIOINFORMATION, 2011, 5 (08) : 310 - 314
  • [2] NO is not a direct activator of MMP9
    Mccarthy, Sean N.
    Bove, Peter F.
    Heim, John
    Matthews, Dwight E.
    Akaike, Takaaki
    Van Der Vliet, Albert
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2006, 41 : S127 - S127
  • [3] Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3
    Mauris, Jerome
    Woodward, Ashley M.
    Cao, Zhiyi
    Panjwani, Noorjahan
    Argueeso, Pablo
    [J]. JOURNAL OF CELL SCIENCE, 2014, 127 (14) : 3141 - 3148
  • [4] Effects of intermolecular bond depletion of NGAL/MMP9 complex on MMP9 activation and tumor invasiveness
    Candido, Saverio
    Falzone, Luca
    Salemi, Rossella
    Libra, Massimo
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 42 : S30 - S30
  • [5] MMP9及MMP9基因多态性的研究进展
    黄小亚
    张丹红
    [J]. 中国实用神经疾病杂志, 2008, (05) : 139 - 141
  • [6] MATRIX METALLOPROTEINASES MMP2 AND MMP9 ARE PRODUCED IN THE METANEPHROS BUT ONLY MMP9 IS REQUIRED FOR EARLY KIDNEY MORPHOGENESIS
    LELONGT, B
    VERPONT, MC
    DELAUCHE, M
    LEHTONEN, E
    RONCO, P
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 1995, 6 (03): : 700 - 700
  • [7] The mechanisms of MMP9 expression in cardiomyocytes
    Zhou, RF
    Tomanck, RJ
    [J]. FASEB JOURNAL, 2003, 17 (05): : A879 - A879
  • [8] Combined spectroscopy and molecular modeling studies on the binding of galbanic acid and MMP9
    Kiani, Amir
    Almasi, Khadijeh
    Shokoohinia, Yalda
    Sadrjavadi, Komail
    Nowroozi, Amin
    Shahlaei, Mohsen
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 81 : 308 - 315
  • [9] MMP2 and MMP9 associate with crescentic glomerulonephritis
    Phillips, Tessa M.
    Fadia, Mitali
    Lea-Henry, Tom N.
    Smiles, Jonathan
    Walters, Giles D.
    Jiang, Simon H.
    [J]. CLINICAL KIDNEY JOURNAL, 2017, 10 (02): : 215 - 220
  • [10] Degradomic actions of MMP2 and MMP9 on granulosa
    Rosewell, Katherine
    Beach, Carol
    Randle, Charlotte
    Curry, Thomas, Jr.
    [J]. BIOLOGY OF REPRODUCTION, 2007, : 230 - 230