IMU Preintegration for Visual-Inertial Odometry Pose Estimation

被引:0
|
作者
Liu, Fuchun [1 ]
Su, Xuan [1 ]
He, Yun [1 ]
Luo, Fei [1 ]
Gao, Huanli [1 ]
机构
[1] South China Univ Technol, Minist Educ, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Networked Control ASNC, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
IMU Preintegration; Manifold; Kinematic Equation; VIO; Noise Propagation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, based on Inertial Measurement Unit (IMU) preintegration, a pose estimation algorithm for Visual-Inertial Odometry (VIO) system has been investigated. Firstly, we developed the kinematic equation of acceleration and angular velocity of IMU. To avoid the re-integration caused by the change of the system states, the IMU measurements are preintegrated on the Riemannian manifold of rotation. Furthermore, we studied the propagation characteristic of noise and derived the state transition equation of the noise. So the influence of noise on pose estimation can be dramatically reduced. Compared with the famous Okvis algorithm, experimental results on two public datasets of EuRoC show that the proposed IMU preintegration algorithm achieves good estimation median of translation error with 0.14 m, which is better than Okvis with 0.24 m.
引用
收藏
页码:5305 / 5310
页数:6
相关论文
共 50 条
  • [1] Pose estimation by Omnidirectional Visual-Inertial Odometry
    Ramezani, Milad
    Khoshelham, Kourosh
    Fraser, Clive
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 105 : 26 - 37
  • [2] IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation
    Forster, Christian
    Carlone, Luca
    Dellaert, Frank
    Scaramuzza, Davide
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XI, 2015,
  • [3] On-Manifold Preintegration for Real-Time Visual-Inertial Odometry
    Forster, Christian
    Carlone, Luca
    Dellaert, Frank
    Scaramuzza, Davide
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) : 1 - 21
  • [4] Visual-Inertial odometry Based on Kinematic Constraints in IMU Frames
    Wang, Xin
    Pan, Youqi
    Yan, Zike
    Zha, Hongbin
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 6550 - 6557
  • [5] Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization
    Petit, Bruno
    Guillemard, Richard
    Gay-Bellile, Vincent
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 171 - 179
  • [6] Observability Analysis of IMU Intrinsic Parameters in Stereo Visual-Inertial Odometry
    Jung, Jae Hyung
    Heo, Sejong
    Park, Chan Gook
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 7530 - 7541
  • [7] Invariant Cubature Kalman Filtering-Based Visual-Inertial Odometry for Robot Pose Estimation
    Sang, Xiaoyue
    Li, Jingchao
    Yuan, Zhaohui
    Yu, Xiaojun
    Zhang, Jingqin
    Zhang, Jianrui
    Yang, Pengfei
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (23) : 23413 - 23422
  • [8] An EKF-Based Fusion of Visual-Inertial Odometry and GPS for Global Robot Pose Estimation
    Nguyen Hoang Khoi Tran
    Vinh-Hao Nguyen
    [J]. 6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [9] Robocentric Visual-Inertial Odometry
    Huai, Zheng
    Huang, Guoquan
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6319 - 6326
  • [10] Robocentric visual-inertial odometry
    Huai, Zheng
    Huang, Guoquan
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2022, 41 (07): : 667 - 689