Estimation of optimal cluster number for fuzzy clustering with combined fuzzy entropy index

被引:0
|
作者
He, Hong [1 ]
Tan, Yonghong [1 ]
Fujimoto, Ken'ichi [2 ]
机构
[1] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 200234, Peoples R China
[2] Kagawa Univ, Univ Consortium E Learning, Shikoku Ctr, Kagawa 7608521, Japan
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
fuzzy entropy; compactness; separation; fuzzy clustering; optimal number of clusters; VALIDITY INDEX; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Without sufficient prior knowledge the identification of the optimal cluster numbers is a difficult problem for unsupervised clustering. Since fuzzy entropy is essential for measuring the information of fuzzy sets, a combined fuzzy entropy index (CFE) is developed for searching the best number of clusters k(b). The CFE involves the compactness and the separation of clusters both in the data space and in the membership space. The partition of fuzzy membership sets evaluated by the ratio of the symmetric fuzzy cross entropy of membership subset pairs to the average of fuzzy entropies of clusters. The most appropriate number of clusters for a specific data set is determined by the maximum of the CFE index. In order to verify the effectiveness of the CFE in the search of k(b), six artificial data sets and eight real data sets were used in the fuzzy c-means clustering. The results show the CFE index has superior performance in the estimation of the best partition of clusters than the indices PC, PE, MPC, XB, FS, Kwon, FHV and PBMF, especially for high dimensional datasets. Moreover, the CFE index can correctly find the kb for the data sets with overlapping clusters, subclusters, multi-clusters, or various density clusters.
引用
收藏
页码:697 / 703
页数:7
相关论文
共 50 条
  • [1] On cluster validity index for estimation of the optimal number of fuzzy clusters
    Kim, DW
    Lee, KH
    Lee, DH
    [J]. PATTERN RECOGNITION, 2004, 37 (10) : 2009 - 2025
  • [2] Tournament fuzzy clustering algorithm with automatic cluster number estimation
    Endo, Y
    Yamaguchi, S
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1998, 81 (02): : 46 - 59
  • [3] Tournament fuzzy clustering algorithm with automatic cluster number estimation
    Endo, Yasunori
    Yamaguchi, Shingo
    [J]. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 1998, 81 (02): : 46 - 58
  • [4] A cluster validity index for fuzzy clustering
    Zhang, Yunjie
    Wang, Weina
    Zhang, Xiaona
    Li, Yi
    [J]. INFORMATION SCIENCES, 2008, 178 (04) : 1205 - 1218
  • [5] A cluster validity index for fuzzy clustering
    Rezaee, Babak
    [J]. FUZZY SETS AND SYSTEMS, 2010, 161 (23) : 3014 - 3025
  • [6] A cluster validity index for fuzzy clustering
    Wu, KL
    Yang, MS
    [J]. PATTERN RECOGNITION LETTERS, 2005, 26 (09) : 1275 - 1291
  • [7] Cluster validity index for fuzzy clustering
    Kwon, SH
    [J]. ELECTRONICS LETTERS, 1998, 34 (22) : 2176 - 2177
  • [8] Improved cluster validity index for fuzzy clustering
    Kwon, Soon Hak
    Kim, Jihong
    Son, Seo Ho
    [J]. ELECTRONICS LETTERS, 2021, 57 (21) : 792 - 794
  • [9] An exponential cluster validity index for fuzzy clustering with crisp and fuzzy data
    Fazei Zarandi, M.H.
    Faraji, M.R.
    Karbasian, M.
    [J]. Scientia Iranica, 2010, 17 (2 E) : 95 - 110
  • [10] An Exponential Cluster Validity Index for Fuzzy Clustering with Crisp and Fuzzy Data
    Zarandi, M. H. Fazel
    Faraji, M. R.
    Karbasian, M.
    [J]. SCIENTIA IRANICA TRANSACTION E-INDUSTRIAL ENGINEERING, 2010, 17 (02): : 95 - 110