The antimicrobial triclosan (TCS) is a pervasive and persistent environmental micropollutant which can contaminate land, biota, and water through the land application of biosolids. Many existing sludge management techniques have limited effectiveness against TCS and TCS metabolites including triclosan-sulfate (TCS-SO4). The objective of this study was to evaluate the impacts of different digestion types (anaerobic, aerobic/anoxic, and sequential anaerobic + aerobic/anoxic), temperatures, and digester sludge retention times (SRTs) on the destruction of organic matter, and on TCS/TCS metabolites. Conventional mesophilic anaerobic digesters (AD), room temperature cycling aerobic/anoxic digesters (AERO/ANOX), and sequential AD + AERO/ANOX digesters were all effective in removing organic matter. The optimum single-stage AD. and AERO/ANOX scenarios were both 20-day SRTs which had 52.3 +/- 1.4 and 47.1 +/- 3.7% chemical oxygen demand (COD) removals, respectively. Sequential AD + AERO/ANOX digesters improved organic matter destruction, removing up to 68.2 +/- 2.1% of COD at an 8-day AD + 12-day AERO/ANOX second-stage (mesophilic) SRTs. While AD showed modest levels of TCS removals (all <40%), TCS was substantially more degradable aerobically with AERO/ANOX removing up to 80.3 +/- 2.5% of TCS and nearly all TCS-SO4 entering the digester at a 20-day SRI. Sequential AD + AERO/ANOX removed virtually all TCS-SO4 entering the system and improved TCS removals from first stage ADs. However, they were less effective than a single-stage AERO/ANOX digester operating at the same overall SRI. These results demonstrate that AERO/ANOX and sequential AD + AERO/ANOX processes could be used to reduce the amount of TCS, TCS-SO4 and TCS-related compounds in digested sludge, minimizing the environmental burden of the land application of biosolids. (C) 2020 Elsevier B.V. All rights reserved.