A detailed study of the magnetic phase transition in CuCrO2

被引:8
|
作者
Ehlers, G. [1 ]
Podlesnyak, A. A. [1 ]
Frontzek, M. [2 ]
Freitas, R. S. [3 ]
Ghivelder, L. [4 ]
Gardner, J. S. [5 ,6 ,7 ]
Shiryaev, S. V. [8 ]
Barilo, S. [8 ]
机构
[1] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
[2] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland
[3] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
[4] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
[5] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA
[6] NIST, NCNR, Gaithersburg, MD 20899 USA
[7] Natl Synchrotron Radiat Res Ctr, Neutron Grp, Hsinchu 30077, Taiwan
[8] Inst Solid State & Semicond Phys, Minsk 220072, BELARUS
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
Compendex;
D O I
10.1088/0953-8984/25/49/49600
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The phase transition in CuCrO2 to an ordered magnetic state is studied with bulk measurements and elastic and inelastic neutron scattering techniques. The reported onset of spontaneous electric polarization at T D 23.5 K coincides with the appearance, on cooling, of elastic magnetic scattering. At higher temperatures long range magnetic correlations gradually develop but they are dynamic. The ground state is characterized by three-dimensional long range magnetic ordering but along the c direction the correlation length remains limited to similar to 200 angstrom.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Phase diagram of CuCrO2 in a magnetic field
    Fishman, Randy S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (36)
  • [2] On antiferromagnetic transition in CuCrO2
    Marchenko, V. I.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2014, 119 (06) : 1084 - 1087
  • [3] On antiferromagnetic transition in CuCrO2
    V. I. Marchenko
    Journal of Experimental and Theoretical Physics, 2014, 119 : 1084 - 1087
  • [4] Magnetic structure of CuCrO2: a single crystal neutron diffraction study
    Frontzek, M.
    Ehlers, G.
    Podlesnyak, A.
    Cao, H.
    Matsuda, M.
    Zaharko, O.
    Aliouane, N.
    Barilo, S.
    Shiryaev, S. V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (01)
  • [5] High magnetic field evolution of ferroelectricity in CuCrO2
    Mun, Eundeok
    Frontzek, M.
    Podlesnyak, A.
    Ehlers, G.
    Barilo, S.
    Shiryaev, S. V.
    Zapf, Vivien S.
    PHYSICAL REVIEW B, 2014, 89 (05)
  • [6] Crystal and magnetic structures of frustrated antiferromagnet CuCrO2
    Damay, Francoise H.
    Andre, Gilles
    Poienar, Maria
    Martin, Christine
    Maignan, Antoine
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C127 - C127
  • [7] Magnetic excitations in the geometric frustrated multiferroic CuCrO2
    Frontzek, M.
    Haraldsen, J. T.
    Podlesnyak, A.
    Matsuda, M.
    Christianson, A. D.
    Fishman, R. S.
    Sefat, A. S.
    Qiu, Y.
    Copley, J. R. D.
    Barilo, S.
    Shiryaev, S. V.
    Ehlers, G.
    PHYSICAL REVIEW B, 2011, 84 (09)
  • [8] Magnetic dilution and steric effects in the multiferroic delafossite CuCrO2
    Pachoud, E.
    Singh, K.
    Breard, Y.
    Martin, C.
    Andre, G.
    Hardy, V.
    Simon, Ch.
    Maignan, A.
    PHYSICAL REVIEW B, 2012, 86 (05):
  • [9] First-order ferroelastic transition in a magnetoelectric multiferroic: CuCrO2
    Aktas, O.
    Quirion, G.
    Otani, T.
    Kimura, T.
    PHYSICAL REVIEW B, 2013, 88 (22)
  • [10] Phase transition in nonmagnetic Al-doped delafossite oxide CuCrO2: Monte Carlo simulation
    Yan, Z. R.
    Qin, M. H.
    PHYSICS LETTERS A, 2015, 379 (38) : 2388 - 2391