Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks

被引:85
|
作者
Zazo, Ruben [1 ]
Lozano-Diez, Alicia [1 ]
Gonzalez-Dominguez, Javier [1 ]
Toledano, Doroteo T. [1 ]
Gonzalez-Rodriguez, Joaquin [1 ]
机构
[1] Univ Autonoma Madrid, ATVS Biometr Recognit Grp, Madrid, Spain
来源
PLOS ONE | 2016年 / 11卷 / 01期
关键词
SPEAKER;
D O I
10.1371/journal.pone.0146917
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (similar to 3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources (a single GPU) that outperforms a reference i-vector system on a subset of the NIST Language Recognition Evaluation (8 target languages, 3s task) by up to a 26%. This result is in line with previously published research using proprietary LSTM implementations and huge computational resources, which made these former results hardly reproducible. Further, we extend those previous experiments modeling unseen languages (out of set, OOS, modeling), which is crucial in real applications. Results show that a LSTM RNN with OOS modeling is able to detect these languages and generalizes robustly to unseen OOS languages. Finally, we also analyze the effect of even more limited test data (from 2.25s to 0.1s) proving that with as little as 0.5s an accuracy of over 50% can be achieved.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Simplified Gating in Long Short-term Memory (LSTM) Recurrent Neural Networks
    Lu, Yuzhen
    Salem, Fathi M.
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 1601 - 1604
  • [2] Native Language Identification in Very Short Utterances Using Bidirectional Long Short-Term Memory Network
    Adeeba, Farah
    Hussain, Sarmad
    IEEE ACCESS, 2019, 7 : 17098 - 17110
  • [3] Long Short-Term Memory Recurrent Neural Networks for Antibacterial Peptide Identification
    Youmans, Michael
    Spainhour, Christian
    Qiu, Peng
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 498 - 502
  • [4] Kazakh and Russian Languages Identification Using Long Short-Term Memory Recurrent Neural Networks
    Kozhirbayev, Zhanibek
    Yessenbayev, Zhandos
    Karabalayeva, Muslima
    2017 11TH IEEE INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2017), 2017, : 342 - 346
  • [5] SPOKEN LANGUAGE UNDERSTANDING USING LONG SHORT-TERM MEMORY NEURAL NETWORKS
    Yao, Kaisheng
    Peng, Baolin
    Zhang, Yu
    Yu, Dong
    Zweig, Geoffrey
    Shi, Yangyang
    2014 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY SLT 2014, 2014, : 189 - 194
  • [6] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [7] On Speaker Adaptation of Long Short-Term Memory Recurrent Neural Networks
    Miao, Yajie
    Metze, Florian
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1101 - 1105
  • [8] Long Short-Term Memory (LSTM) Neural Networks Applied to Energy Disaggregation
    Tongta, Anawat
    Chooruang, Komkrit
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [9] Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)
    Hopp, Daniel
    JOURNAL OF OFFICIAL STATISTICS, 2022, 38 (03) : 847 - 873
  • [10] Classification of Antibacterial Peptides Using Long Short-Term Memory Recurrent Neural Networks
    Youmans, Michael
    Spainhour, John C. G.
    Qiu, Peng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (04) : 1134 - 1140