Quasi-geometric integration of guiding-center orbits in piecewise linear toroidal fields

被引:1
|
作者
Eder, M. [1 ]
Albert, C. G. [2 ]
Bauer, L. M. P. [1 ]
Kasilov, S. V. [1 ,3 ,4 ]
Kernbichler, W. [1 ]
机构
[1] Graz Univ Technol, Inst Theoret Phys Computat Phys, Fus OAW, Petersgasse 16, A-8010 Graz, Austria
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] Kharkov Inst Phys & Technol, Inst Plasma Phys, Natl Sci Ctr, Akad Skaya Str 1, UA-61108 Kharkov, Ukraine
[4] Kharkov Natl Univ, Dept Appl Phys & Plasma Phys, Svobody Sq 4, UA-61022 Kharkov, Ukraine
关键词
TRANSPORT;
D O I
10.1063/5.0022117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A numerical integration method for guiding-center orbits of charged particles in toroidal fusion devices with three-dimensional field geometry is described. Here, high order interpolation of electromagnetic fields in space is replaced by a special linear interpolation, leading to locally linear Hamiltonian equations of motion with piecewise constant coefficients. This approach reduces computational effort and noise sensitivity, while the conservation of total energy, magnetic moment and phase space volume is retained. The underlying formulation treats motion in piecewise linear fields exactly and, thus, preserves the non-canonical symplectic form. The algorithm itself is only quasi-geometric due to a series expansion in the orbit parameter. For practical purposes, an expansion to the fourth order retains geometric properties down to computer accuracy in typical examples. When applied to collisionless guiding-center orbits in an axisymmetric tokamak and a realistic three-dimensional stellarator configuration, the method demonstrates stable long-term orbit dynamics conserving invariants. In Monte Carlo evaluation of transport coefficients, the computational efficiency of quasi-geometric integration is an order of magnitude higher than with a standard fourth order Runge-Kutta integrator.
引用
收藏
页数:17
相关论文
共 18 条
  • [1] Particle and guiding-center orbits in crossed electric and magnetic fields
    Brizard, Alain J. J.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (04)
  • [2] GUIDING-CENTER SIMULATION OF TOROIDAL PLASMAS
    JOHNSON, TH
    KILLEEN, J
    ANDERSON, OA
    RENSINK, ME
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) : 219 - 241
  • [3] GUIDING-CENTER SIMULATION OF TRANSIENT PHENOMENA IN TOROIDAL DEVICES
    JOHNSON, TH
    KILLEEN, J
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1361 - 1361
  • [4] Faithful guiding-center orbits in an axisymmetric magnetic field
    Brizard, Alain J.
    Hodgeman, Brook C.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (04)
  • [5] Symplectic integration with non-canonical quadrature for guiding-center orbits in magnetic confinement devices
    Albert, Christopher G.
    Kasilov, Sergei, V
    Kernbichler, Winfried
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 403
  • [6] LINEAR INSTABILITIES IN QUASISTATIC GUIDING-CENTER PLASMAS
    SHOUCRI, M
    KNORR, G
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1976, 18 (03) : 187 - 204
  • [7] Compact formulas for guiding-center orbits in axisymmetric tokamak geometry
    Brizard, Alain J.
    [J]. PHYSICS OF PLASMAS, 2011, 18 (02)
  • [8] GUIDING-CENTER ORBITS FOR PARTICLES IN CROSS-FIELD DEVICES
    RIYOPOULOS, S
    [J]. JOURNAL OF PLASMA PHYSICS, 1991, 46 : 473 - 485
  • [9] GUIDING-CENTER EQUATIONS FOR ELECTRONS IN ULTRAINTENSE LASER FIELDS
    MOORE, JE
    FISCH, NJ
    [J]. PHYSICS OF PLASMAS, 1994, 1 (05) : 1105 - 1116
  • [10] Guiding-center motion for electrons in strong laser fields
    Dubois, J.
    Berman, S. A.
    Chandre, C.
    Uzer, T.
    [J]. PHYSICAL REVIEW E, 2018, 98 (05)