Object Labeling for Recognition Using Vocabulary Trees

被引:0
|
作者
Slobodan, Ilic [1 ]
机构
[1] TU Berlin, Deutsch Telekom Labs, Berlin, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach to object recognition using vocabulary tree which, instead of finding the closest image in the database to the given query image, finds object labels representing the most similar objects to the query image. We can also recognize object pose if pose labels are associated to the database images. Our approach to object recognition relies on creating a specific object or pose descriptor for each group of database images representing the same object or object pose. The quantitative analysis showed that this approach is more efficient, both in terms of precision and speed, compared to original image retrieval based on vocabulary tree. The experiments are performed for object recognition on two different databases and pose recognition using available face database.
引用
收藏
页码:1029 / 1032
页数:4
相关论文
共 50 条
  • [1] Active Object Recognition using Vocabulary Trees
    Govender, Natasha
    Claassens, Jonathan
    Nicolls, Fred
    Warrell, Jonathan
    2013 IEEE WORKSHOP ON ROBOT VISION (WORV), 2013, : 20 - 26
  • [2] Object recognition using multiresolution trees
    Bianchini, Monica
    Maggini, Marco
    Sarti, Lorenzo
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 331 - 339
  • [3] Object class recognition using SNOW with a part vocabulary
    Wen, Ming
    Wang, Lu
    Wang, Lei
    Zhuo, Ding
    Wang, Wenyuan
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2007, 4482 : 526 - +
  • [4] Multimodal Object Recognition Using Random Clustering Trees
    Villamizar, M.
    Garrell, A.
    Sanfeliu, A.
    Moreno-Noguer, F.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015), 2015, 9117 : 496 - 504
  • [5] SEMANTIC OBJECT RECOGNITION USING CLUSTERING AND DECISION TREES
    Schmidsberger, Falk
    Stolzenburg, Frieder
    ICAART 2011: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2011, : 670 - 673
  • [6] Semantic object recognition using clustering and decision trees
    Schmidsberger, Falk
    Stolzenburg, Frieder
    ICAART 2011 - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence, 2011, 1 : 670 - 673
  • [7] Mixtures of trees for object recognition
    Ioffe, S
    Forsyth, D
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2001, : 180 - 185
  • [8] Improved Object Recognition with Decision Trees Using Subspace Clustering
    Peralta, Billy
    Caro, Luis Alberto
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (01) : 41 - 48
  • [9] Improved object recognition with decision trees using subspace clustering
    Peralta B.
    Caro L.A.
    1600, Fuji Technology Press (20): : 41 - 48
  • [10] Better Object Recognition using Bag of Visual Word Model with Compact Vocabulary
    Sachdeva, Varsha Devi
    Fida, Erum
    Baber, Junaid
    Bakhtyar, Maheen
    Dad, Imam
    Atif, Muhammad
    2017 13TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET 2017), 2017,