Downward transport of ozone-rich air near Mt. Everest

被引:49
|
作者
Zhu, Tong [1 ]
Lin, Weili
Song, Yu
Cai, Xuhui
Zou, Han
Kang, Ling
Zhou, Libo
Akimoto, Hajime
机构
[1] Peking Univ, ESPC State Key Lab, Coll Environm Sci, Beijing 100871, Peoples R China
[2] CAS, Inst Atmospher Phys, Beijing 100029, Peoples R China
[3] Japan Agcy Marine Earth Sci & Technol, Frontier Res Ctr Global Change, Kanazawa Ku, Kanagawa 2360001, Japan
[4] Chinese Acad Meteorol Sci, Beijing, Peoples R China
关键词
D O I
10.1029/2006GL027726
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
High ozone concentrations ( 70 - 80 ppb) were found from late afternoon to midnight at sites at ca. 5000 m above sea level ( m. a. s. l.) on Mt. Everest. Observational data suggest that katabatic wind from Mt. Everest was "pumping down'' ozone-rich air from the upper troposphere. Numerical modelling demonstrates that cooling of glaciers and snow on the northern mountain slopes and heating of the valley surface play important roles in forming katabatic winds and accelerating vertical exchange between the upper atmosphere and surface air. These results suggest that the "pump-down'' mechanism at high mountains covered with snow/glaciers is an important process in terrestrial intercontinental transport of ozone and atmosphere - land exchanges of masses and energy.
引用
收藏
页数:4
相关论文
共 16 条
  • [1] Observation of organochlorine pesticides in the air of the Mt. Everest region
    Li, J
    Zhu, T
    Wang, F
    Qiu, XH
    Lin, WL
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2006, 63 (01) : 33 - 41
  • [2] Characteristics and Changes in Air Temperature and Glacier's Response on the North Slope of Mt. Qomolangma (Mt. Everest)
    Yang, Xingguo
    Zhang, Tingjun
    Qin, Dahe
    Kang, Shichang
    Qin, Xiang
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2011, 43 (01) : 147 - 160
  • [3] Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest
    Gerken, Tobias
    Wei, Dandan
    Chase, Randy J.
    Fuentes, Jose D.
    Schumacher, Courtney
    Machado, Luiz A. T.
    Andreoli, Rita V.
    Chamecki, Marcelo
    Ferreira de Souza, Rodrigo A.
    Freire, Livia S.
    Jardine, Angela B.
    Manzi, Antonio O.
    Nascimento dos Santos, Rosa M.
    von Randow, Celso
    Costa, Patricia dos Santos
    Stoy, Paul C.
    Tota, Julio
    Trowbridge, Amy M.
    ATMOSPHERIC ENVIRONMENT, 2016, 124 : 64 - 76
  • [4] A CRYOTRAP TECHNIQUE FOR THE QUANTITATION OF MONOTERPENES IN HUMID AND OZONE-RICH FOREST AIR
    JUTTNER, F
    JOURNAL OF CHROMATOGRAPHY, 1988, 442 : 157 - 163
  • [5] THE ORIGIN OF OZONE-RICH AIR IN THE MIDDLE STRATOSPHERE OBSERVED OVER EUROPE AT THE END OF JANUARY 1979
    BRAUN, W
    DUTSCH, HU
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 1984, 2 (02) : 163 - 173
  • [6] Air quality monitoring at Mt. Krvavec: Aerosol black carbon and ozone
    Bizjak, M
    Tursic, J
    Lesnjak, M
    Cegnar, T
    ACTA CHIMICA SLOVENICA, 1999, 46 (03) : 421 - 434
  • [7] The impact of transported ozone-rich air on the atmospheric ozone content following the 26 January 2001 and 7 March 2006 Gujarat earthquakes
    Ganguly, Nandita D.
    REMOTE SENSING LETTERS, 2011, 2 (03) : 195 - 202
  • [8] Can Water Vapor Transport over the Himalayas above 8000 m asl?-A Case Study on Mt. Everest
    Xu, Bing
    Xie, Aihong
    Zhu, Jiangping
    WATER, 2022, 14 (11)
  • [9] POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?
    Guzzella, Licia
    Salerno, Franco
    Freppaz, Michele
    Roscioli, Claudio
    Pisanello, Francesca
    Poma, Giulia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 544 : 382 - 390
  • [10] Influence of air mass downward transport on the variability of surface ozone at Xianggelila Regional Atmosphere Background Station, southwest China
    Ma, J.
    Lin, W. L.
    Zheng, X. D.
    Xu, X. B.
    Li, Z.
    Yang, L. L.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (11) : 5311 - 5325