Sparse representation-based demosaicing method for microgrid polarimeter imagery

被引:49
|
作者
Zhang, Junchao [1 ,2 ,3 ,4 ,5 ]
Luo, Haibo [1 ,4 ,5 ]
Liang, Rongguang [3 ]
Ahmed, Ashfaq [6 ]
Zhang, Xiangyue [1 ,2 ,4 ,5 ]
Hui, Bin [1 ,4 ,5 ]
Chang, Zheng [1 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[4] Chinese Acad Sci, Key Lab Optoelect Informat Proc, Shenyang 110016, Liaoning, Peoples R China
[5] Key Lab Image Understanding & Comp Vis, Shenyang 110016, Liaoning, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Bioengn, Hong Kong, Peoples R China
关键词
INTERPOLATION; DIVISION;
D O I
10.1364/OL.43.003265
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To address the key image interpolation issue in microgrid polarimeters, we propose a machine learning model based on sparse representation. The sparsity and non-local self-similarity priors are used as regularization terms to enhance the stability of an interpolationmodel. Moreover, to make the best of the correlation among different polarization orientations, patches of different polarization channels are joined to learn adaptive sub-dictionary. Synthetic and real images are used to evaluate the interpolated performance. The experimental results demonstrate that our proposed method achieves state-of-the-art results in terms of quantitative measures and visual quality. (c) 2018 Optical Society of America
引用
收藏
页码:3265 / 3268
页数:4
相关论文
共 50 条
  • [1] Learning a convolutional demosaicing network for microgrid polarimeter imagery
    Zhang, Junchao
    Shao, Jianbo
    Luo, Haibo
    Zhang, Xiangyue
    Hui, Bin
    Chang, Zheng
    Liang, Rongguang
    [J]. OPTICS LETTERS, 2018, 43 (18) : 4534 - 4537
  • [2] Sparse representation-based demosaicking method for joint chromatic and polarimetric imagery
    Luo, Yidong
    Zhang, Junchao
    Tian, Di
    [J]. OPTICS AND LASERS IN ENGINEERING, 2023, 164
  • [3] Sparse Representation-Based Nearest Neighbor Classifiers for Hyperspectral Imagery
    Zou, Jinyi
    Li, Wei
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (12) : 2418 - 2422
  • [4] A Guided Generative Adversarial Network Demosaicing Strategy for Integrated Microgrid Polarimeter Imagery
    Sargent, Garrett C.
    Ratliff, Bradley M.
    Asari, Vijayan
    [J]. POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING XIV, 2020, 11412
  • [5] SUPERPIXEL-LEVEL SPARSE REPRESENTATION-BASED CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Jia, Sen
    Deng, Bin
    Jia, Xiuping
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3302 - 3305
  • [6] Locality-preserving sparse representation-based classification in hyperspectral imagery
    Gao, Lianru
    Yu, Haoyang
    Zhang, Bing
    Li, Qingting
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [7] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    Sreeja, S. R.
    Samanta, Debasis
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31157 - 31180
  • [8] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    S. R. Sreeja
    Debasis Samanta
    [J]. Multimedia Tools and Applications, 2023, 82 : 31157 - 31180
  • [9] Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
    She, Qingshan
    Chen, Kang
    Ma, Yuliang
    Thinh Nguyen
    Zhang, Yingchun
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [10] Spatial-spectral-combined sparse representation-based classification for hyperspectral imagery
    Jia, Sen
    Xie, Yao
    Tang, Guihua
    Zhu, Jiasong
    [J]. SOFT COMPUTING, 2016, 20 (12) : 4659 - 4668