Prediction of Thermal Decomposition Temperatures Using Statistical Methods

被引:4
|
作者
Beste, Ariana [1 ,2 ]
Barnes, Brian C. [1 ]
机构
[1] US Army Res Lab, Energet Mat Sci Branch, Aberdeen Proving Ground, MD 21005 USA
[2] Oak Ridge Associated Univ, Belcamp, MD 21017 USA
关键词
STRUCTURE-PROPERTY RELATIONSHIP; ORGANIC PEROXIDES; IONIC LIQUIDS; STABILITY; POLYMERS;
D O I
10.1063/12.0000811
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We create and evaluate computational models for the prediction of onset thermal decomposition temperatures for energetic materials using machine learning techniques. Our models are trained and tested on published differential scanning calorimetry data consisting of decomposition temperatures and molecular formulas. The chemical information is encoded using cheminformatics molecular representations. Due to the high dimensionality of the descriptor space, we analyze the utility of explicit dimension reduction and regularization techniques. We contrast the performance of linear and nonlinear regression methods and discuss the dependence of prediction quality with dataset splitting into training and test sets. We also identify outliers and examine the effect of outlier removal on model performance. For nitro, nitrate, and nitramine compounds, we obtain statistical models with root mean square errors close to the estimated noise in the experimental decomposition temperatures of the underlying dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Spatial prediction of urban–rural temperatures using statistical methods
    Jan Hjort
    Juuso Suomi
    Jukka Käyhkö
    [J]. Theoretical and Applied Climatology, 2011, 106 : 139 - 152
  • [2] Spatial prediction of urban-rural temperatures using statistical methods
    Hjort, Jan
    Suomi, Juuso
    Kayhko, Jukka
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2011, 106 (1-2) : 139 - 152
  • [3] Prediction of Thermal Decomposition Temperature of Polymers Using QSPR Methods
    Ajloo, Davood
    Sharifian, Ali
    Behniafar, Hossein
    [J]. BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2008, 29 (10) : 2009 - 2016
  • [4] Prediction of thermal decomposition temperature of polymers using QSPR methods
    School of Chemistry, Damghan University of Basic Science, Damghan, Iran
    [J]. Bull. Korean Chem. Soc., 2008, 10 (2009-2016):
  • [5] Prediction of the thermal decomposition temperatures of imidazolium ILs based on norm indexes
    Duan, Weijia
    Pan, Yong
    He, Hongpeng
    Zhao, Shengping
    Zhao, Xinyan
    Jiang, Juncheng
    Shu, Chi-Min
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2020, 315 (315)
  • [6] ON THE STATISTICAL PREDICTION OF OCEAN TEMPERATURES
    RODEN, GI
    GROVES, GW
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (01): : 249 - 263
  • [7] Using statistical methods in a parametric thermal analysis
    Shuraki, Gal
    Keysar, Lior
    [J]. TWENTY FOURTH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2008, 2008, : 96 - 102
  • [8] Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids
    Kroon, Maaike C.
    Buijs, Wim
    Peters, Cor J.
    Witkamp, Geert-Jan
    [J]. THERMOCHIMICA ACTA, 2007, 465 (1-2) : 40 - 47
  • [9] Prediction of thermal decomposition of biomass using reaction MD
    Daily, John W.
    van Duin, Adri C. T.
    Goddard, W. A., III
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [10] Comparison of prediction performance using statistical postprocessing methods
    Keunhee Han
    JunTae Choi
    Chansoo Kim
    [J]. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52 : 495 - 507