A DAE approach to flexible multibody dynamics

被引:0
|
作者
Betsch, P [1 ]
Steinmann, P [1 ]
机构
[1] Univ Kaiserslautern, Dept Mech Engn, D-67653 Kaiserslautern, Germany
关键词
constrained mechanical systems; differential algebraic equations; energy-momentum methods; finite rotations; multibody systems; structural dynamics;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present work deals with the dynamics of multibody systems consisting of rigid bodies and beams. Nonlinear finite element methods are used to devise a frame-indifferent space discretization of the underlying geometrically exact beam theory. Both rigid bodies and semi-discrete beams are viewed as finite-dimensional dynamical systems with holonomic constraints. The equations of motion pertaining to the constrained mechanical systems under consideration take the form of Differential Algebraic Equations (DAEs). The DAEs are discretized directly by applying a Galerkin-based method. It is shown that the proposed DAE approach provides a unified framework for the integration of flexible multibody dynamics.
引用
收藏
页码:367 / 391
页数:25
相关论文
共 50 条
  • [1] A DAE Approach to Flexible Multibody Dynamics
    P. Betsch
    P. Steinmann
    [J]. Multibody System Dynamics, 2002, 8 (3) : 365 - 389
  • [2] A comparison of DAE integrators in the context of benchmark problems for flexible multibody dynamics
    Betsch, Peter
    Becker, Christian
    Franke, Marlon
    Yang, Yinping
    Janz, Alexander
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2015, 29 (07) : 2653 - 2661
  • [3] A comparison of DAE integrators in the context of benchmark problems for flexible multibody dynamics
    Peter Betsch
    Christian Becker
    Marlon Franke
    Yinping Yang
    Alexander Janz
    [J]. Journal of Mechanical Science and Technology, 2015, 29 : 2653 - 2661
  • [4] A VARIATIONAL APPROACH TO DYNAMICS OF FLEXIBLE MULTIBODY SYSTEMS
    WU, SC
    HAUG, EJ
    KIM, SS
    [J]. MECHANICS OF STRUCTURES AND MACHINES, 1989, 17 (01): : 3 - 32
  • [5] Strategies for the numerical integration of DAE systems in multibody dynamics
    Pennestrì, E
    Vita, L
    [J]. COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2004, 12 (02) : 106 - 116
  • [6] Domain decomposition approach to flexible multibody dynamics simulation
    JunYoung Kwak
    TaeYoung Chun
    SangJoon Shin
    Olivier A. Bauchau
    [J]. Computational Mechanics, 2014, 53 : 147 - 158
  • [7] An Efficient Implementation of the Recursive Approach to Flexible Multibody Dynamics
    J. Znamenáček
    M. Valášek
    [J]. Multibody System Dynamics, 1998, 2 : 227 - 251
  • [8] An Efficient Implementation of the Recursive Approach to Flexible Multibody Dynamics
    Znamenacek, J.
    Valasek, M.
    [J]. MULTIBODY SYSTEM DYNAMICS, 1998, 2 (03) : 227 - 251
  • [9] Flexible multibody dynamics - An object-oriented approach
    Anantharaman, M
    [J]. NONLINEAR DYNAMICS, 1996, 9 (1-2) : 205 - 221
  • [10] Domain decomposition approach to flexible multibody dynamics simulation
    Kwak, JunYoung
    Chun, TaeYoung
    Shin, SangJoon
    Bauchau, Olivier A.
    [J]. COMPUTATIONAL MECHANICS, 2014, 53 (01) : 147 - 158