Trend analysis using agglomerative hierarchical clustering approach for time series big data

被引:19
|
作者
Pasupathi, Subbulakshmi [1 ]
Shanmuganathan, Vimal [2 ]
Madasamy, Kaliappan [3 ]
Yesudhas, Harold Robinson [4 ]
Kim, Mucheol [5 ]
机构
[1] VIT Univ, Sch Comp, Scope, Chennai Campus, Chennai, Tamil Nadu, India
[2] Natl Engn Coll, Dept IT, Kovilpatti, Tamil Nadu, India
[3] Ramco Inst Technol, Dept CSE, Rajapalayam, Tamil Nadu, India
[4] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore, Tamil Nadu, India
[5] Chung Ang Univ, Sch Comp Sci & Engn, 84 Heukseok Ro, Seoul, South Korea
来源
JOURNAL OF SUPERCOMPUTING | 2021年 / 77卷 / 07期
基金
新加坡国家研究基金会;
关键词
Big data; Agglomerative hierarchical clustering; Paradigmatic time series; Trend analysis; VISUAL ANALYSIS; NETWORKS;
D O I
10.1007/s11227-020-03580-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Road traffic accidents are a 'global tragedy' that generates unpredictable chunks of data having heterogeneity. To avoid this heterogeneous tragedy, we need to fraternize and categorize the datasets. This can be done with the help of clustering and association rule mining techniques. As the trend of accidents is increasing throughout the year, agglomerative hierarchical clustering approach is proposed for time series big data for trend analysis. This clustering approach segments the time sequence data into different clusters after normalizing the discrete time sequence data. Agglomerative hierarchical clustering takes the objects with similar properties and groups them together to form the group of clusters. The paradigmatic time sequence (PTS) data for each cluster with the help of dynamic time warping are identified that calculate the closest time sequence. The PTS analyzes various zone details and forms a cluster to report the data. This approach is more useful and optimal than the traditional statistical techniques.
引用
收藏
页码:6505 / 6524
页数:20
相关论文
共 50 条
  • [1] Trend analysis using agglomerative hierarchical clustering approach for time series big data
    Subbulakshmi Pasupathi
    Vimal Shanmuganathan
    Kaliappan Madasamy
    Harold Robinson Yesudhas
    Mucheol Kim
    The Journal of Supercomputing, 2021, 77 : 6505 - 6524
  • [2] Trend Analysis Using Agglomerative Hierarchical Clustering Approach for Time Series Big Data
    Subbulakshmi, P.
    Vimal, S.
    Kaliappan, M.
    Robinson, Y. Harold
    Kim, Mucheol
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND APPLIED COGNITIVE COMPUTING, 2021, : 869 - 876
  • [3] Application of Agglomerative Hierarchical Clustering for Clustering of Time Series Data
    Radovanovic, Ana
    Li, Junshi
    Milanovic, Jovica, V
    Milosavljevic, Nina
    Storchi, Riccardo
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 640 - 644
  • [4] Hierarchical Agglomerative Clustering of Time-Warped Series
    Kotas, Marian
    Leski, Jacek
    Moron, Tomasz
    Guzman, Jader Giraldo
    MAN-MACHINE INTERACTIONS 5, ICMMI 2017, 2018, 659 : 207 - 216
  • [5] Agglomerative hierarchical clustering for nonlinear data analysis
    Wattanachon, U
    Lursinsap, C
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 1420 - 1425
  • [6] Agglomerative hierarchical clustering for data with tolerance
    Yasunori, Endo
    Yukihiro, Hamasuna
    Sadaaki, Miyamoto
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 404 - 409
  • [7] Research of Spectral Clustering on Trend of Big Time Series
    Qu Zhenxin
    Wang Mengzhu
    Tan Kejia
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 562 - 568
  • [8] A Novel Approach for Climate Classification Using Agglomerative Hierarchical Clustering
    Uppalapati, Sanketh
    Garg, Vishal
    Pudi, Vikram
    Mathur, Jyotirmay
    Gupta, Raj
    Bhatia, Aviruch
    ENERGY INFORMATICS, EI.A 2023, PT I, 2024, 14467 : 152 - 167
  • [9] Development of an efficient hierarchical clustering analysis using an agglomerative clustering algorithm
    Naeem, Arshia
    Rehman, Mariam
    Anjum, Maria
    Asif, Muhammad
    CURRENT SCIENCE, 2019, 117 (06): : 1045 - 1053
  • [10] Market-Basket Analysis using Agglomerative Hierarchical approach for clustering a retail items
    Saraf, Rujata
    Patil, Sonal
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (03): : 47 - 56