A note on identifiability and maximum likelihood estimation for a heterogeneous capture-recapture model

被引:2
|
作者
Moraes Pezzott, George Lucas [1 ]
Bueno Salasar, Luis Ernesto [1 ]
Leite, Jose Galvao [1 ]
Louzada-Neto, Francisco [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Stat, Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, Inst Math & Computat Sci, Sao Carlos, SP, Brazil
关键词
Capture-recapture; heterogeneity; identifiability; mixture model; population Size; POPULATION-SIZE; PROBABILITIES VARY; CLOSED POPULATION; NUMBER; NONIDENTIFIABILITY; ABUNDANCE;
D O I
10.1080/03610926.2019.1615628
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article discusses identifiability and maximum likelihood estimation for a closed population capture-recapture model with heterogeneity in capture probabilities. The model assumes that the individual capture probabilities arise from a discrete distribution over the interval Considering the complete likelihood, without applying any conditioning, we prove that identifiability holds under a restriction on the number of support points of the mixing distribution. Under this identifiability assumption, we present a simple closed-form iterative algorithm for maximum likelihood estimation. Interval estimation is carried by a bootstrap resampling procedure. The proposed methods are illustrated on a literature real data set and a simulation study is carried to assess the frequentist merits of different population size estimators.
引用
收藏
页码:5273 / 5293
页数:21
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation for Model Mt,α for Capture-Recapture Data with Misidentification
    Vale, R. T. R.
    Fewster, R. M.
    Carroll, E. L.
    Patenaude, N. J.
    [J]. BIOMETRICS, 2014, 70 (04) : 962 - 971
  • [2] MAXIMUM-LIKELIHOOD APPLIED TO A CAPTURE-RECAPTURE MODEL
    SPROTT, DA
    [J]. BIOMETRICS, 1981, 37 (02) : 371 - 375
  • [3] CONDITIONAL INFERENCE AND MAXIMUM-LIKELIHOOD IN A CAPTURE-RECAPTURE MODEL
    VIVEROS, R
    SPROTT, DA
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1986, 15 (03) : 1035 - 1046
  • [4] On identifiability in capture-recapture models
    Holzmann, Hajo
    Munk, Axel
    Zucchini, Walter
    [J]. BIOMETRICS, 2006, 62 (03) : 934 - 936
  • [5] Open population maximum likelihood spatial capture-recapture
    Glennie, Richard
    Borchers, David L.
    Murchie, Matthew
    Harmsen, Bart J.
    Foster, Rebecca J.
    [J]. BIOMETRICS, 2019, 75 (04) : 1345 - 1355
  • [6] On identifiability in capture-recapture models - Reply
    Link, William A.
    [J]. BIOMETRICS, 2006, 62 (03) : 936 - 939
  • [7] Maximum empirical likelihood estimation for abundance in a closed population from capture-recapture data
    Liu, Yukun
    Li, Pengfei
    Qin, Jing
    [J]. BIOMETRIKA, 2017, 104 (03) : 527 - 543
  • [8] Spatially explicit maximum likelihood methods for capture-recapture studies
    Borchers, D. L.
    Efford, M. G.
    [J]. BIOMETRICS, 2008, 64 (02) : 377 - 385
  • [9] Identifiability and inferential issues in capture-recapture experiments with heterogeneous detection probabilities
    Farcomeni, Alessio
    Tardella, Luca
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 2602 - 2626
  • [10] On the integrated maximum likelihood estimators for a closed population capture-recapture model with unequal capture probabilities
    Salasar, Luis Ernesto B.
    Leite, Jose Galvao
    Louzada, Francisco
    [J]. STATISTICS, 2015, 49 (06) : 1204 - 1220