Taylor coefficients of Anderson-Thakur series and explicit formulae

被引:6
|
作者
Chang, Chieh-Yu [1 ]
Green, Nathan [2 ]
Mishiba, Yoshinori [3 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30042, Taiwan
[2] Univ Calif San Diego, Dept Math, San Diego, CA 92093 USA
[3] Univ Ryukyus, Dept Math Sci, 1 Senbaru, Nishihara, Okinawa 9030213, Japan
关键词
SPECIAL ZETA-VALUES; ALGEBRAIC INDEPENDENCE; MULTIZETA VALUES; TENSOR POWERS; MOTIVES;
D O I
10.1007/s00208-020-02103-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each positive characteristic multiple zeta value (defined by Thakur in Function field arithmetic, World Scientific Publishing, River Edge, 2004), the first and third authors in Chang and Mishiba (Invent Math, 2020, https://doi.org/10.1007/s00222020-00988-1) constructed a t-module together with an algebraic point such that a specified coordinate of the logarithmic vector of the algebraic point is a rational multiple of that multiple zeta value. The objective of this paper is to use the Taylor coefficients of Anderson-Thakur series and t-motivic Carlitz multiple star polylogarithms to give explicit formulae for all of the coordinates of this logarithmic vector.
引用
收藏
页码:1425 / 1474
页数:50
相关论文
共 50 条