Exchange Springs in L10-FePt(110)/A1-FePt Bilayer Films

被引:3
|
作者
Li, Y. H. [1 ]
Zeng, D. F. [1 ]
Zhao, H. J. [1 ]
Du, B. [1 ]
Wei, J. [1 ]
Yoshimura, S. [2 ]
Saito, H. [2 ]
Li, G. Q. [1 ]
机构
[1] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
[2] Akita Univ, Grad Sch Engn & Resource Sci, Akita 0108502, Japan
关键词
Coervicity; exchange spring; L1(0)-FePt/A1-FePt bilayer film; magnetization reversal; MAGNETIC-PROPERTIES; FEPT;
D O I
10.1109/TMAG.2015.2438325
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To investigate the effect of hard/soft exchange spring on magnetic properties, L1(0)-FePt/A1-FePt bilayer films are fabricated on MgO(110) substrates by using magnetron sputtering. The hard layer annealed at a moderate temperature of 500 degrees C showed an unseparated granular morphology with an almost full coverage, in spite of an incomplete A1 -> L1(0) transition. The c-axis (easy axis) of L1(0)-FePt preferred to align in-plane rather than off-plane. For a system of L1(0)-FePt (10 nm)/A1-FePt (20 nm), the magnetization jumped abruptly at 1.4 kOe (=nucleation field of the soft layer) and -7 kOe (=switching field of the hard layer), respectively. However, a perfectly rectangle-like magnetization curve with a coercivity as high as similar to 10 kOe was observed for a system of L1(0-)FePt (30 nm)/A1-FePt (20 nm). This indicates that the exchange length might be able to be affected by grain growth in an incompletely A1 -> L1(0) transited FePt film. According to the experimental results, exchange length of the annealed FePt (30 nm) film should exceed 10 nm, which is much larger than that (5 nm) of an ideal L1(0)-FePt. These bilayer films are suitable for fabricating magnetic force microscopy tips to measure different magnetic objects.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Exchange Springs in L10-FePt(110)/A1-FePt Bilayer Films.
    Li, Y.
    Zeng, D.
    Zhao, H.
    Du, B.
    Wei, J.
    Yoshimura, S.
    Saito, H.
    Li, G.
    [J]. 2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [2] L10-FePt(001)/A1-FePt双层交换弹簧的磁性
    魏娟
    杜斌
    李佳芹
    姚雅芹
    陈阳
    李鱼辉
    曾道富
    李国庆
    张昆华
    闻明
    [J]. 科学通报, 2017, (15) : 1611 - 1619
  • [3] Studies of Exchange Coupling in FeCo/L10-FePt Bilayer Thin Films
    Vashisht, Garima
    Goyal, Rajan
    Bala, Manju
    Ojha, Sunil
    Annapoorni, S.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (03)
  • [4] NiO spacer mediated magnetic anisotropy in L10-FePt/NiO/A1-FePt trilayer structures
    Gao, Tenghua
    Harumoto, Takashi
    Zhang, Song
    Tu, Rong
    Zhang, Lianmeng
    Nakamura, Yoshio
    Shi, Ji
    [J]. PHYSICAL REVIEW B, 2017, 95 (13)
  • [5] Evaluation of spin-orbit torque in a L10-FePt single layer and a L10-FePt/Pt bilayer
    Sato, Takumi
    Seki, Takeshi
    Kohda, Makoto
    Ryu, Jeongchun
    Gamou, Hiromu
    Karube, Shutaro
    Takanashi, Koki
    Nitta, Junsaku
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (06)
  • [6] Design and magnetic properties of L10-FePt/Fe and L10-FePt exchange coupled graded nanodots
    Wu, Xiayan
    Wang, Fang
    Wang, Chunling
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 384 : 40 - 44
  • [7] Formation of ordered L10-FePt phase in FePt–Ag thin films
    P. V. Makushko
    M. N. Shamis
    N. Y. Schmidt
    I. E. Kotenko
    S. Gulyas
    G. L. Katona
    T. I. Verbytska
    D. L. Beke
    M. Albrecht
    Iu M. Makogon
    [J]. Applied Nanoscience, 2020, 10 : 4809 - 4816
  • [8] Dot size dependence of magnetic properties in microfabricated L10-FePt (001) and L10-FePt (110) dot arrays
    Seki, T.
    Shima, T.
    Yakushiji, K.
    Takanashi, K.
    Li, G. Q.
    Ishio, S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)
  • [9] Microstructure and magnetic properties of fcc-FePt/L10-FePt exchange-coupled composite films
    Yumei Zhang
    Liang Zhao
    Shanshan Li
    Mei Liu
    Ming Feng
    Haibo Li
    [J]. Applied Physics A, 2018, 124
  • [10] Microstructure and magnetic properties of fcc-FePt/L10-FePt exchange-coupled composite films
    Zhang, Yumei
    Zhao, Liang
    Li, Shanshan
    Liu, Mei
    Feng, Ming
    Li, Haibo
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (02):