Determinants of some special matrices

被引:2
|
作者
Kapil, Yogesh [1 ]
Singh, Mandeep [1 ]
机构
[1] Sant Longowal Inst Engn & Technol, Dept Math, Longowal, Punjab, India
来源
LINEAR & MULTILINEAR ALGEBRA | 2022年 / 70卷 / 16期
关键词
Loewner matrix; Vandermonde matrix; Schur polynomials; Littlewood-Richardson coefficients; Cauchy matrix; INERTIA;
D O I
10.1080/03081087.2020.1825608
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(1), p(2),..., p(n) be distinct positive real numbers andmbe any integer. Every symmetric polynomial f (x, y) is an element of C[x, y] induces a symmetric matrix [f(p(i), p(j))] (n)(i,j=1). We obtain the determinants of such matrices with an aim to find the determinants of P-m = [(p(i) + p(j))(m)](i,j=1)(n) and B-2m = [(p(i) - p(j))(2m)](i,j=1)(n) form is an element of N (where N is the set of natural numbers) in terms of the Schur polynomials. Wealso discuss and compute determinant of the matrix K-m = [p(i)(m)+p(j)(m)/p(i)+p(j)](i,j=1)(n) for any integer m in terms of the Schur and skew-Schur polynomials.
引用
收藏
页码:3119 / 3141
页数:23
相关论文
共 50 条
  • [1] Determinants of some special matrices over commutative finite chain rings
    Jitman, Somphong
    SPECIAL MATRICES, 2020, 8 (01): : 242 - 256
  • [2] DETERMINANTS OF SOME PENTADIAGONAL MATRICES
    Losonczi, Laszlo
    GLASNIK MATEMATICKI, 2021, 56 (02) : 271 - 286
  • [3] Some Properties of Some Special Matrices
    Yue, Xiaopeng
    Liang, Xiquan
    Sun, Zhongpin
    FORMALIZED MATHEMATICS, 2005, 13 (04): : 541 - 547
  • [4] On computing the determinants and inverses of some special type of tridiagonal and constant-diagonals matrices
    Witula, Roman
    Slota, Damian
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 514 - 527
  • [5] Exact Determinants of Some Special Circulant Matrices Involving Four Kinds of Famous Numbers
    Jiang, Xiaoyu
    Hong, Kicheon
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] Inertia of some special matrices
    Garg, Isha
    Aujla, Jaspal Singh
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 602 - 607
  • [7] On the computation of inverses and determinants of a kind of special matrices
    Zhao, Di
    Li, Hongyi
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 721 - 726
  • [8] Accurate determinants of some classes of matrices
    Orera, H.
    Pena, J. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 1 - 14
  • [9] Some identities for determinants of structured matrices
    Basor, EL
    Ehrhardt, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 343 : 5 - 19
  • [10] Some special classes of infinite matrices
    Popa, N.
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04): : 518 - 529