Quasi-stationary distributions for subcritical superprocesses

被引:4
|
作者
Liu, Rongli [1 ]
Ren, Yan-Xia [2 ,3 ]
Song, Renming [4 ]
Sun, Zhenyao [5 ]
机构
[1] Beijing Jiaotong Univ, Sch Sci, Beijing 100044, Peoples R China
[2] Peking Univ, LMAM Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Isreal Inst Technol, Fac Ind Engn & Management Technion, IL-3200003 Haifa, Israel
关键词
Superprocess; Yaglom limit; Quasi-stationary distribution; BRANCHING-PROCESS; LIMIT-THEOREMS; BEHAVIOR;
D O I
10.1016/j.spa.2020.10.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that X is a subcritical superprocess. Under some asymptotic conditions on the mean semigroup of X, we prove the Yaglom limit of X exists and identify all quasi-stationary distributions of X. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 134
页数:27
相关论文
共 50 条
  • [1] VECTORIAL QUASI-STATIONARY DISTRIBUTIONS
    VOKHAC, K
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (17): : 867 - &
  • [2] THE QUASI-STATIONARY DISTRIBUTION OF THE SUBCRITICAL CONTACT PROCESS
    Arrejoria, Franco
    Groisman, Pablo
    Rolla, Leonardo T.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (10) : 4517 - 4525
  • [3] Quasi-stationary simulation: The subcritical contact process
    de Oliveira, Marcelo Martins
    Dickman, Ronald
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3A) : 685 - 689
  • [4] QUASI-STATIONARY DISTRIBUTIONS FOR AUTOCATALYTIC REACTIONS
    PARSONS, RW
    POLLETT, PK
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (1-2) : 249 - 254
  • [5] Quasi-stationary distributions for Levy processes
    Kyprianou, A. E.
    Palmowski, Z.
    [J]. BERNOULLI, 2006, 12 (04) : 571 - 581
  • [6] Quasi-stationary distributions and population processes
    Meleard, Sylvie
    Villemonais, Denis
    [J]. PROBABILITY SURVEYS, 2012, 9 : 340 - 410
  • [7] COMPUTATION OF QUASI-STATIONARY DISTRIBUTIONS IN MARKOVIAN QUEUES
    KIJIMA, M
    MAKIMOTO, N
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 1994, 27 (1-4) : 429 - 432
  • [8] QUASI-STATIONARY DISTRIBUTIONS OF QUEUES IN HEAVY TRAFFIC
    KYPRIANOU, EK
    [J]. JOURNAL OF APPLIED PROBABILITY, 1972, 9 (04) : 821 - 831
  • [9] QUASI-STATIONARY DISTRIBUTIONS OF A STOCHASTIC METAPOPULATION MODEL
    GYLLENBERG, M
    SILVESTROV, DS
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 33 (01) : 35 - 70
  • [10] TOTAL VARIATION APPROXIMATION FOR QUASI-STATIONARY DISTRIBUTIONS
    Barbour, A. D.
    Pollett, P. K.
    [J]. JOURNAL OF APPLIED PROBABILITY, 2010, 47 (04) : 934 - 946