New Formulas for the Eigenfunctions of the Two-Particle Difference Calogero-Moser System

被引:1
|
作者
Gaillard, Pierre [1 ]
Matveev, Vladimir [1 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
关键词
Casorati determinants; deformations; Darboux-Poschl-Teller equation; difference Calogero-Moser systems; difference Darboux transformations; DARBOUX TRANSFORMATION;
D O I
10.1007/s11005-009-0315-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new proof of the integrability of the DDPT-I equation. The DDPT-I equation represents a functional-difference deformation of the well-known Darboux-Poschl-Teller equation. The proof is based on some formula for special Casorati determinants established in the paper. This formula provides some new representation for the DDPT-I potentials and for the general solution for the DDPT-I equation. It allows also a very easy computation of the action of the difference KdV flow on the DDPT-I initial data. In other words we obtain the new formulas for the eigenfunctions of the Hamiltonians of the two-particle difference BC (1) Calogero-Moser system also known as quantum relativistic Calogero-Moser, (QRCM), system.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] New Formulas for the Eigenfunctions of the Two-Particle Difference Calogero–Moser System
    Pierre Gaillard
    Vladimir Matveev
    Letters in Mathematical Physics, 2009, 89 : 1 - 12
  • [2] Calogero-Moser eigenfunctions modulo ps
    Gorsky, Alexander
    Varchenko, Alexander
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (02)
  • [3] INTEGRABILITY OF DIFFERENCE CALOGERO-MOSER SYSTEMS
    VANDIEJEN, JF
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (06) : 2983 - 3004
  • [4] SUPERINTEGRABILITY OF THE CALOGERO-MOSER SYSTEM
    WOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1983, 95 (06) : 279 - 281
  • [5] On the geometry of the Calogero-Moser system
    Couwenberg, W
    Heckman, G
    Looijenga, E
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (3-4): : 443 - 459
  • [6] A GENERALIZATION OF THE CALOGERO-MOSER SYSTEM
    GIBBONS, J
    HERMSEN, T
    PHYSICA D, 1984, 11 (03): : 337 - 348
  • [7] A GENERALIZED CALOGERO-MOSER SYSTEM
    GIBBONS, J
    PHYSICA D, 1984, 11 (03): : 413 - 413
  • [8] INTEGRABILITY OF CALOGERO-MOSER SPIN SYSTEM
    HIKAMI, K
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (02) : 469 - 472
  • [9] On the canonical mapping of the rational Calogero-Moser system to free particle system and non-dynamical r-matrix Calogero-Moser model
    Gonera, C
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 291 - 295
  • [10] On spin Calogero-Moser system at infinity
    Khoroshkin, S. M.
    Matushko, M. G.
    Sklyanin, E. K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (11)