Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach

被引:101
|
作者
Morales-Delgado, V. F. [1 ]
Gomez-Aguilar, J. F. [2 ]
Saad, Khaled M. [3 ,4 ]
Khan, Muhammad Altaf [5 ]
Agarwal, P. [6 ]
机构
[1] Fraccionamiento Nuevo Horizonte, Unidad Academ Matemat, 2 Av Delicias S-N, Cd Altamirano 40660, Guerrero, Mexico
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Najran Univ, Dept Math, Fac Arts & Sci, POB 1988, Najran City, Saudi Arabia
[4] Taiz Univ, Fac Appl Sci, Dept Math, POB 4007, Taizi, Yemen
[5] City Univ Sci & Informat Technol, Dept Math, Peshawar 25000, KP, Pakistan
[6] ANAND Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
关键词
Laplace homotopy method; Analytical solutions; Oxygen diffusion equation; Caputo-Fabrizio derivative; Liouville-Caputo derivative; Capillary-tissue diffusion; NUMERICAL PATTERNS; SYSTEM; EQUATION; CAPUTO;
D O I
10.1016/j.physa.2019.02.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is study the fractional-order dynamics of the oxygen diffusion through capillary to tissues under the influence of external forces considering the fractional operators of Liouville-Caputo and Caputo-Fabrizio. We apply the Laplace homotopy method for analytical and numerical results. Three cases are considered: first, when axial and radial forces acting on capillary, the second one when only radial force acting on capillary and finally when axial force acting on capillary. In order to validate the importance and application of the presented method with the old and new Caputo fractional order derivatives, we given some examples. The solutions obtained confirm that the Laplace homotopy method is a powerful an efficient technique for analytic treatment of a wide variety of diffusion equations in mathematical physics. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 65
页数:18
相关论文
共 13 条
  • [1] NUMERICAL STUDY OF OXYGEN DIFFUSION FROM CAPILLARY TO TISSUES DURING HYPOXIA WITH EXTERNAL FORCE EFFECTS
    Srivastava, V.
    Tripathi, D.
    Beg, O. Anwar
    [J]. JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (02)
  • [2] Solution of the nonlinear fractional diffusion equation with absorbent term and external force
    Das, S.
    Vishal, K.
    Gupta, P. K.
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (08) : 3970 - 3979
  • [3] Fractional diffusion equation with an absorbent term and a linear external force: Exact solution
    Schot, A.
    Lenzi, M. K.
    Evangelista, L. R.
    Malacarne, L. C.
    Mendes, R. S.
    Lenzi, E. K.
    [J]. PHYSICS LETTERS A, 2007, 366 (4-5) : 346 - 350
  • [4] A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues
    Srivastava, V.
    Rai, K. N.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) : 616 - 624
  • [5] The New Approximate Analytic Solution for Oxygen Diffusion Problem with Time-Fractional Derivative
    Gulkac, Vildan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [6] A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues
    Okeke, Godwin Amechi
    Udo, Akanimo Victor
    Alharthi, Nadiyah Hussain
    Alqahtani, Rubayyi T.
    [J]. MATHEMATICS, 2024, 12 (09)
  • [7] Mathematical Modeling of Oxygen Diffusion from Capillary to Tissues during Hypoxia through Multiple Points Using Fractional Balance Equations with Memory
    Srivastava, V.
    Tripathi, Dharmendra
    Srivastava, P.K.
    Kuharat, S.
    Bég, O. Anwar
    [J]. Critical Reviews in Biomedical Engineering, 2024, 52 (06) : 1 - 13
  • [8] An Approximate Analytical Solution of the Fractional Diffusion Equation with Absorbent Term and External Force by Homotopy Perturbation Method
    Das, Subir
    Gupta, Praveen Kumar
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (03): : 182 - 190
  • [9] An Approximate Analytical Solution of the Fractional Diffusion Equation with External Force and Different Type of Absorbent Term - Revisited
    Das, S.
    Kumar, R.
    Gupta, P. K.
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2010, : 101 - 109
  • [10] N-dimensional fractional diffusion equation and Green function approach: Spatially dependent diffusion coefficient and external force
    Lenzi, EK
    Mendes, RS
    Andrade, JS
    da Silva, LR
    Lucena, LS
    [J]. PHYSICAL REVIEW E, 2005, 71 (05):