Variational Bayes Color Deconvolution with a Total Variation Prior

被引:1
|
作者
Vega, Miguel [1 ]
Mateos, Javier [2 ]
Molina, Rafael [2 ]
Katsaggelos, Aggelos K. [3 ]
机构
[1] Univ Granada, Dept Lenguajes & Sistemas Informat, Granada, Spain
[2] Univ Granada, Dept Ciencias Comp & IA, Granada, Spain
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL USA
关键词
Blind color deconvolution; histopathological images; variational Bayes; total variation; NORMALIZATION;
D O I
10.23919/eusipco.2019.8902589
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In digital brightfield microscopy, tissues are usually stained with two or more dyes. Color deconvolution aims at separating multi-stained images into single stained images. We formulate the blind color deconvolution problem within the Bayesian framework. Our model takes into account the similarity to a given reference color-vector matrix and spatial relations among the concentration pixels by a total variation prior. It utilizes variational inference and an evidence lower bound to estimate all the latent variables. The proposed algorithm is tested on real images and compared with classical and state-of-the-art color deconvolution algorithms.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Variational Bayesian Blind Deconvolution Using a Total Variation Prior
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (01) : 12 - 26
  • [2] Boosting prior knowledge in streaming variational Bayes
    Duc Anh Nguyen
    Van Linh Ngo
    Kim Anh Nguyen
    Canh Hao Nguyen
    Khoat Than
    [J]. NEUROCOMPUTING, 2021, 424 : 143 - 159
  • [3] Bayes and empirical Bayes semi-blind deconvolution using eigenfunctions of a prior covariance
    Pillonetto, Gianluigi
    Bell, Bradley M.
    [J]. AUTOMATICA, 2007, 43 (10) : 1698 - 1712
  • [4] Total variation blind deconvolution
    Chan, TF
    Wong, CK
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 370 - 375
  • [5] Variational Bayesian Blind Color Deconvolution of Histopathological Images
    Hidalgo-Gavira, Natalia
    Mateos, Javier
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (01) : 2026 - 2036
  • [6] Image deconvolution with total variation bounds
    Combettes, PL
    Pesquet, JC
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 441 - 444
  • [7] Blind Image Deconvolution Using Variational Deep Image Prior
    Huo D.
    Masoumzadeh A.
    Kushol R.
    Yang Y.-H.
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11472 - 11483
  • [8] A new total generalized variation induced spatial difference prior model for variational pansharpening
    Liu, Pengfei
    [J]. REMOTE SENSING LETTERS, 2019, 10 (07) : 659 - 668
  • [9] Lipschitz and total-variational regularization for blind deconvolution
    Huang, Yu-Mei
    Ng, Michael K.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 4 (01) : 195 - 206
  • [10] TOTAL SUBSET VARIATION PRIOR
    Kumar, Sanjeev
    Nguyen, Truong Q.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 77 - 80