LORENTZIAN MANIFOLDS: A CHARACTERIZATION WITH SEMICONFORMAL CURVATURE TENSOR

被引:2
|
作者
De, Uday Chand [1 ]
Dey, Chiranjib [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[2] Dhamla Jr High Sch, PO Kedarpur, Dhaniakhali 712406, W Bengal, India
来源
关键词
Lorentzian manifolds; conformal curvature tensor; semiconformal curvature tensor; ROBERTSON-WALKER SPACETIMES; UNIQUENESS; GEOMETRY; TIMES; WEYL;
D O I
10.4134/CKMS.c180248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we characterize semiconformally flat spacetimes and a spacetime with harmonic semiconformal curvature tensor. At first in a semiconformally flat perfect fluid spacetime we obtain a state equation and prove that in particular for dimension n = 4, the spacetime represents a model for incoherent radiation. Next we prove that perfect fluid spacetime with harmonic semiconformal curvature tensor is of Petrov type I, D or O and the spacetime is a GRW spacetime. As a consequence we obtain several corollaries.
引用
收藏
页码:911 / 920
页数:10
相关论文
共 50 条
  • [1] Warped product manifolds: Characterizations through the symmetry of the semiconformal curvature tensor and applications
    Chen, Bang-Yen
    De, Uday Chand
    Turki, Nasser Bin
    Syied, Abdallah Abdelhameed
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [2] Proper Semiconformal Symmetries of Spacetimes with Divergence-Free Semiconformal Curvature Tensor
    Ali, Musavvir
    Pundeer, Naeem Ahmad
    Suh, Young Jin
    [J]. FILOMAT, 2019, 33 (16) : 5191 - 5198
  • [3] LORENTZIAN MANIFOLDS WITH NONPOSITIVE CURVATURE
    FLAHERTY, FJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A207 - A208
  • [4] Semiconformal curvature tensor and perfect fluid spacetimes in general relativity
    Ali, Musavvir
    Pundeer, Naeem Ahmad
    Ali, Akram
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 205 - 210
  • [5] Hypersurfaces of prescribed curvature in Lorentzian manifolds
    Gerhardt, C
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2000, 49 (03) : 1125 - 1153
  • [6] PROJECTIVE CURVATURE TENSOR WITH RESPECT TO ZAMKOVOY CONNECTION IN LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Mandal, Abhijit
    Das, Ashoke
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2020, 26 (03) : 369 - 379
  • [7] Lorentzian manifolds and scalar curvature invariants
    Coley, Alan
    Hervik, Sigbjorn
    Pelavas, Nicos
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (10)
  • [8] The scalar curvature flow in Lorentzian manifolds
    Enz, Christian
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2008, 1 (03) : 323 - 343
  • [9] Completeness of Lorentzian manifolds of constant curvature
    Klingler, B
    [J]. MATHEMATISCHE ANNALEN, 1996, 306 (02) : 353 - 370
  • [10] Spacetime admitting semiconformal curvature tensor in f(R) modify gravity
    Pundeer, Naeem Ahmad
    Rahaman, Farook
    Ali, Musavvir
    Shenawy, Sameh
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (10)