Analytic magnetic reconnection solutions in cylindrical geometry

被引:15
|
作者
Watson, PG [1 ]
Craig, IJD [1 ]
机构
[1] Univ Waikato, Dept Math, Hamilton, New Zealand
基金
美国国家科学基金会;
关键词
D O I
10.1023/A:1016200613237
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we present a new class of exact reconnection solutions in cylindrical geometry. We point out that in the case of planar reconnection there is a natural cylindrical analog to the Cartesian Dawson function model for the magnetic field. Although the resistive energy release scalings of these solutions mimic the Cartesian models an important new feature is the presence of curvature in the current sheet. We go on to show that these solutions can be generalized to three dimensions.
引用
收藏
页码:337 / 354
页数:18
相关论文
共 50 条
  • [1] Analytic Magnetic Reconnection Solutions in Cylindrical Geometry
    P.G. Watson
    I.J.D. Craig
    Solar Physics, 2002, 207 : 337 - 354
  • [2] The geometry of magnetic and vortex reconnection
    Hornig, G
    QUANTIZED VORTEX DYNAMICS AND SUPERFLUID TURBULENCE, 2001, 571 : 373 - 380
  • [3] The analytic nodal method in cylindrical geometry
    Prinsloo, Rian H.
    Tomasevic, Djordje I.
    NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (11) : 2898 - 2907
  • [4] Proton deflectometry of a magnetic reconnection geometry
    Willingale, L.
    Nilson, P. M.
    Kaluza, M. C.
    Dangor, A. E.
    Evans, R. G.
    Fernandes, P.
    Haines, M. G.
    Kamperidis, C.
    Kingham, R. J.
    Ridgers, C. P.
    Sherlock, M.
    Thomas, A. G. R.
    Wei, M. S.
    Najmudin, Z.
    Krushelnick, K.
    Bandyopadhyay, S.
    Notley, M.
    Minardi, S.
    Tatarakis, M.
    Rozmus, W.
    PHYSICS OF PLASMAS, 2010, 17 (04)
  • [5] Analytic solutions of the magnetic annihilation and reconnection problems .1. Planar flow profiles
    Watson, PG
    Craig, IJD
    PHYSICS OF PLASMAS, 1997, 4 (01) : 101 - 109
  • [6] Analytic solutions of the magnetic annihilation and reconnection problems .2. Three-dimensional flows
    Watson, PG
    Craig, IJD
    PHYSICS OF PLASMAS, 1997, 4 (01) : 110 - 119
  • [7] MAGNETIC DIFFUSION IN CYLINDRICAL GEOMETRY
    HERLACH, F
    HELVETICA PHYSICA ACTA, 1971, 44 (03): : 308 - &
  • [8] ReALE: A Reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical geometry
    Loubere, Raphael
    Maire, Pierre-Henri
    Shashkov, Mikhail
    COMPUTERS & FLUIDS, 2011, 46 (01) : 59 - 69
  • [10] Simulation of magnetic reconnection in 3D geometry
    Kostomarov D.P.
    Echkina E.Y.
    Inovenkov I.N.
    Bulanov S.V.
    Mathematical Models and Computer Simulations, 2010, 2 (3) : 293 - 303