Physical degrees of freedom of non-local theories

被引:32
|
作者
Gomis, J
Kamimura, K
Ramírez, T
机构
[1] Univ Barcelona, Fac Fis, Dept ECM, Inst Fis Altes Energies, E-08028 Barcelona, Spain
[2] CER Astrophys Particle Phys & Cosmol, E-08028 Barcelona, Spain
[3] Toho Univ, Dept Phys, Funabashi, Chiba 2748510, Japan
关键词
D O I
10.1016/j.nuclphysb.2004.06.046
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the physical reduced space of non-local theories, around the fixed points of these systems, by analyzing: (i) the Hamiltonian constraints appearing in the 1 + 1 formulation, (ii) the symplectic two form in the surface on constraints. P-adic string theory for spatially homogeneous configurations has two fixed points. The physical phase space around q = 0 is trivial, instead around q = 1/g is infinite-dimensional. For the special case of the rolling tachyon solutions it is an infinite-dimensional Lagrangian submanifold. In the case of string field theory, at lowest truncation level, the physical phase space of spatially homogeneous configurations is two-dimensional around q = 0, which is the relevant case for the rolling tachyon solutions, and infinite-dimensional around q = M-2/g. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 291
页数:29
相关论文
共 50 条
  • [1] Apparent ghosts and spurious degrees of freedom in non-local theories
    Foffa, Stefano
    Maggiore, Michele
    Mitsou, Ermis
    [J]. PHYSICS LETTERS B, 2014, 733 : 76 - 83
  • [2] Initial conditions and degrees of freedom of non-local gravity
    Gianluca Calcagni
    Leonardo Modesto
    Giuseppe Nardelli
    [J]. Journal of High Energy Physics, 2018
  • [3] Erratum to: Initial conditions and degrees of freedom of non-local gravity
    Gianluca Calcagni
    Leonardo Modesto
    Giuseppe Nardelli
    [J]. Journal of High Energy Physics, 2019
  • [4] Physical reduced phase space of non-local theories
    Gomis, J
    Kamimura, K
    Ramírez, T
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2004, 52 (6-7): : 525 - 530
  • [5] Phase transitions in tensorial group field theories: Landau-Ginzburg analysis of models with both local and non-local degrees of freedom
    Luca Marchetti
    Daniele Oriti
    Andreas G. A. Pithis
    Johannes Thürigen
    [J]. Journal of High Energy Physics, 2021
  • [6] Phase transitions in tensorial group field theories: Landau-Ginzburg analysis of models with both local and non-local degrees of freedom
    Marchetti, Luca
    Oriti, Daniele
    Pithis, Andreas G. A.
    Thurigen, Johannes
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [7] Non-local elastic plate theories
    Lu, Pin
    Zhang, P. Q.
    Lee, H. P.
    Wang, C. M.
    Reddy, J. N.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3225 - 3240
  • [8] Penrose limits and non-local theories
    Hubeny, VE
    Rangamani, M
    Verlinde, E
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2002, (10):
  • [9] ON A THEOREM IN NON-LOCAL FIELD THEORIES
    GULMANELLI, P
    [J]. NUOVO CIMENTO, 1953, 10 (11): : 1582 - 1589
  • [10] NON-LOCAL PHYSICAL KINETICS
    Alexeev, B., V
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2008, (04): : 53 - +