Mapping arid landscapes with multispectral and hyperspectral imagery

被引:0
|
作者
Lewis, MM [1 ]
机构
[1] Univ Adelaide, Dept Soil & Water, Glen Osmond, SA 5064, Australia
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper draws on several studies that have applied multispectral and hyperspectral imagery to the task of discriminating landscape composition in southern Australian rangeland environments. Imagery from Landsat Thematic Mapper, Geoscan II, Casi and Airborne Multispectral Scanner were compared and several feature extraction and mapping techniques evaluated. Hyperspectral imagery enabled more distinct vegetation and landscape components to be mapped, improved calibration of imagery enabled comparison with reference spectra and more certainty about these components, while both VNIR and SWIR regions yielded useful information about arid landscapes. Classification of imagery produced a thematic map suitable for land or habitat inventory, while mapping of individual landscape components is more likely to be useful for land condition assessment and monitoring.
引用
收藏
页码:2902 / 2904
页数:3
相关论文
共 50 条
  • [1] Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery
    Lewis, M
    Jooste, V
    de Gasparis, AA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07): : 1471 - 1479
  • [2] Comparative analysis of mineral mapping for hyperspectral and multispectral imagery
    Vignesh, Kumar M.
    Kiran, Yarrakula
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (04)
  • [3] Comparative analysis of mineral mapping for hyperspectral and multispectral imagery
    Kumar M Vignesh
    Yarrakula Kiran
    [J]. Arabian Journal of Geosciences, 2020, 13
  • [4] Comparison of hyperspectral imagery with aerial photography and multispectral imagery for mapping broom snakeweed
    Yang, Chenghai
    Everitt, J. H.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (20) : 5423 - 5438
  • [5] BENTHIC MAPPING USING HIGH RESOLUTION MULTISPECTRAL AND HYPERSPECTRAL IMAGERY
    Marcello, J.
    Eugenio, F.
    Marques, F.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1535 - 1538
  • [6] Comparative Analysis of Multispectral and Hyperspectral Imagery for Mapping Sugarcane Varieties
    Amir Sedighi
    Saeid Hamzeh
    Mohammad Karimi Firozjaei
    Hamid Valipoori Goodarzi
    Abd Ali Naseri
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2023, 91 (6) : 453 - 470
  • [7] Comparative Analysis of Multispectral and Hyperspectral Imagery for Mapping Sugarcane Varieties
    Sedighi, Amir
    Hamzeh, Saeid
    Firozjaei, Mohammad Karimi
    Goodarzi, Hamid Valipoori
    Naseri, Abd Ali
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2023, 91 (06): : 453 - 470
  • [8] Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot
    Yang, Chenghai
    Everitt, James H.
    Fernandez, Carlos J.
    [J]. BIOSYSTEMS ENGINEERING, 2010, 107 (02) : 131 - 139
  • [9] Critical Analysis of Urban Vegetation Mapping by Satellite Multispectral and Airborne Hyperspectral Imagery
    Gadal, Sebastien
    Ouerghemmi, Walid
    Barlatier, Romain
    Mozgeris, Gintautas
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT (GISTAM 2019), 2019, : 97 - 104
  • [10] FUSION OF MULTISPECTRAL LIDAR AND HYPERSPECTRAL IMAGERY
    Rasti, Behnood
    Ghamisi, Pedram
    Gloaguen, Richard
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2659 - 2662