Modified Cross-Validation for Penalized High-Dimensional Linear Regression Models

被引:26
|
作者
Yu, Yi [1 ]
Feng, Yang [2 ]
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Lasso; Tuning parameter selection; VARIABLE SELECTION; ORACLE PROPERTIES; PREDICTION RULE; ADDITIVE-MODELS; ERROR RATE; LASSO; REGULARIZATION; LIKELIHOOD; CRITERION;
D O I
10.1080/10618600.2013.849200
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, for Lasso penalized linear regression models in high-dimensional settings, we propose a modified cross-validation (CV) method for selecting the penalty parameter. The methodology is extended to other penalties, such as Elastic Net. We conduct extensive simulation studies and real data analysis to compare the performance of the modified CV method with other methods. It is shown that the popular K-fold CV method includes many noise variables in the selected model, while the modified CV works well in a wide range of coefficient and correlation settings. Supplementary materials containing the computer code are available online.
引用
收藏
页码:1009 / 1027
页数:19
相关论文
共 50 条
  • [1] SCAD-PENALIZED REGRESSION IN HIGH-DIMENSIONAL PARTIALLY LINEAR MODELS
    Xie, Huiliang
    Huang, Jian
    [J]. ANNALS OF STATISTICS, 2009, 37 (02): : 673 - 696
  • [2] Uniform Consistency of Cross-Validation Estimators for High-Dimensional Ridge Regression
    Patil, Pratik
    Wei, Yuting
    Rinaldo, Alessandro
    Tibshirani, Ryan J.
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [3] PENALIZED LINEAR REGRESSION WITH HIGH-DIMENSIONAL PAIRWISE SCREENING
    Gong, Siliang
    Zhang, Kai
    Liu, Yufeng
    [J]. STATISTICA SINICA, 2021, 31 (01) : 391 - 420
  • [4] Penalized Regression Methods With Modified Cross-Validation and Bootstrap Tuning Produce Better Prediction Models
    Pavlou, Menelaos
    Omar, Rumana Z.
    Ambler, Gareth
    [J]. BIOMETRICAL JOURNAL, 2024, 66 (05)
  • [5] Cross-validation approaches for penalized Cox regression
    Dai, Biyue
    Breheny, Patrick
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (04) : 702 - 715
  • [6] Fast Cross-validation for Multi-penalty High-dimensional Ridge Regression
    van de Wiel, Mark A.
    van Nee, Mirrelijn M.
    Rauschenberger, Armin
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 835 - 847
  • [7] Robust Cross-Validation of Linear Regression QSAR Models
    Konovalov, Dmitry A.
    Llewellyn, Lyndon E.
    Heyden, Yvan Vander
    Coomans, Danny
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (10) : 2081 - 2094
  • [8] Variance estimation based on blocked 3x2 cross-validation in high-dimensional linear regression
    Yang, Xingli
    Wang, Yu
    Yan, Wennan
    Li, Jihong
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (11) : 1934 - 1947
  • [9] Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation
    Zhou, Ruichao
    Wang, Lu
    Wu, Jianhong
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023,
  • [10] Model selection properties of forward selection and sequential cross-validation for high-dimensional regression
    Wieczorek, Jerzy
    Lei, Jing
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 454 - 470