Critical non-Hermitian skin effect

被引:261
|
作者
Li, Linhu [1 ]
Lee, Ching Hua [1 ]
Mu, Sen [1 ]
Gong, Jiangbin [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
关键词
D O I
10.1038/s41467-020-18917-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Critical systems represent physical boundaries between different phases of matter and have been intensely studied for their universality and rich physics. Yet, with the rise of non-Hermitian studies, fundamental concepts underpinning critical systems - like band gaps and locality - are increasingly called into question. This work uncovers a new class of criticality where eigenenergies and eigenstates of non-Hermitian lattice systems jump discontinuously across a critical point in the thermodynamic limit, unlike established critical scenarios with spectrum remaining continuous across a transition. Such critical behavior, dubbed the "critical non-Hermitian skin effect", arises whenever subsystems with dissimilar non-reciprocal accumulations are coupled, however weakly. This indicates, as elaborated with the generalized Brillouin zone approach, that the thermodynamic and zero-coupling limits are not exchangeable, and that even a large system can be qualitatively different from its thermodynamic limit. Examples with anomalous scaling behavior are presented as manifestations of the critical non-Hermitian skin effect in finite-size systems. More spectacularly, topological in-gap modes can even be induced by changing the system size. We provide an explicit proposal for detecting the critical non-Hermitian skin effect in an RLC circuit setup, which also directly carries over to established setups in non-Hermitian optics and mechanics. In non-Hermitian systems, fundamental concepts like bandgaps and locality cannot be applied as in Hermitian systems. Here, the authors introduce a class of non-Hermitian critical scenarios where the eigenstates and energies jump discontinuously across a critical point, with anomalous scaling properties
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Critical non-Hermitian skin effect
    Linhu Li
    Ching Hua Lee
    Sen Mu
    Jiangbin Gong
    [J]. Nature Communications, 11
  • [2] Scaling rule for the critical non-Hermitian skin effect
    Yokomizo, Kazuki
    Murakami, Shuichi
    [J]. PHYSICAL REVIEW B, 2021, 104 (16)
  • [3] Non-Hermitian Skin Effect in Non-Hermitian Optical Systems
    Zhang, Yingqiu
    Wei, Zhongchao
    [J]. LASER & PHOTONICS REVIEWS, 2024,
  • [4] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    [J]. RESEARCH, 2021, 2021
  • [5] Dislocation non-Hermitian skin effect
    Schindler, Frank
    Prem, Abhinav
    [J]. PHYSICAL REVIEW B, 2021, 104 (16)
  • [6] A review on non-Hermitian skin effect
    Zhang, Xiujuan
    Zhang, Tian
    Lu, Ming-Hui
    Chen, Yan-Feng
    [J]. ADVANCES IN PHYSICS-X, 2022, 7 (01):
  • [7] Nonlinear non-Hermitian skin effect
    Yuce, Cem
    [J]. PHYSICS LETTERS A, 2021, 408
  • [8] Transient non-Hermitian skin effect
    Gu, Zhongming
    Gao, He
    Xue, Haoran
    Li, Jensen
    Su, Zhongqing
    Zhu, Jie
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Transient non-Hermitian skin effect
    Zhongming Gu
    He Gao
    Haoran Xue
    Jensen Li
    Zhongqing Su
    Jie Zhu
    [J]. Nature Communications, 13 (1)
  • [10] Non-Hermitian chiral skin effect
    Ma, Xin-Ran
    Cao, Kui
    Wang, Xiao-Ran
    Wei, Zheng
    Du, Qian
    Kou, Su -Peng
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):