SOYMILK ISOFLAVONE CONVERSION PREDICTION BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

被引:0
|
作者
Chiang, H. -H. [1 ]
Chen, K. -I [2 ]
Liu, C. -T. [3 ]
Hsieh, S. -C. [2 ]
Cheng, K. -C. [2 ]
机构
[1] Fu Jen Catholic Univ, Dept Elect Engn, New Taipei, Taiwan
[2] Natl Taiwan Univ, Grad Inst Food Sci & Technol, Taipei 10764, Taiwan
[3] Natl Taiwan Univ, Inst Biotechnol, Taipei 10764, Taiwan
关键词
ANFIS modeling; Fermentation; Isoflavone aglycone; Isoflavone conversion; Soymilk; HYDROLYSIS; GLUCOSIDES; EXTRACTION; GLYCOSIDES; GENISTEIN;
D O I
暂无
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this study, a model for prediction of soymilk isoflavone glycoside conversion was constructed using adaptive neuro-fuzzy inference system (ANFIS) techniques. We chose aeration rate, cultivation duration, and the amount of isoflavone glycoside as the three inputs and the yield of isoflavone aglycone as the single output to develop the prediction model. The average root mean square error (RMSE) of the output over 50 training epochs for genistin and daidzin conversion processes were 3.43 x 10(-5) and 4.59 x 10(-5), respectively, which demonstrates that the established models were significantly well-trained. The values of RMSE and MAE for genistin and daidzin conversion processes were (0.46, 0.83) and (0.36, 0.63) during testing, which suggests that the yield values predicted by the ANFIS model closely matched the actual values. The results implied that ANFIS is a powerful tool for predicting isoflavone conversion during fermentation processes. Compared with the one-factor-at-a-time approach, ANFIS exhibited superior performance for scale-up of soybean fermentation.
引用
收藏
页码:1853 / 1860
页数:8
相关论文
共 50 条
  • [1] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [2] Application of Adaptive Neuro-fuzzy Inference System for road accident prediction
    Hosseinpour, Mehdi
    Yahaya, Ahmad Shukri
    Ghadiri, Seyed Mohammadreza
    Prasetijo, Joewono
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2013, 17 (07) : 1761 - 1772
  • [3] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    [J]. BATTERIES-BASEL, 2024, 10 (03):
  • [4] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xue, Xinhua
    Yang, Xingguo
    [J]. NATURAL HAZARDS, 2013, 67 (02) : 901 - 917
  • [5] Adaptive Multidimensional Neuro-Fuzzy Inference System for Time Series Prediction
    Velasquez, J. D.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (08) : 2694 - 2699
  • [6] Prediction of amount of imports based on adaptive neuro-fuzzy inference system
    Chang, Zhipeng
    Liu, Liping
    Li, Zhiping
    [J]. 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT PERVASIVE COMPUTING, PROCEEDINGS, 2007, : 437 - 440
  • [7] Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    Chang, FJ
    Chang, YT
    [J]. ADVANCES IN WATER RESOURCES, 2006, 29 (01) : 1 - 10
  • [8] Protein structure prediction using an adaptive neuro-fuzzy inference system
    Wang, YX
    Wang, ZH
    Li, XM
    [J]. PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 1625 - 1628
  • [9] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xinhua Xue
    Xingguo Yang
    [J]. Natural Hazards, 2013, 67 : 901 - 917
  • [10] Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction
    Mensah, Rhoda Afriyie
    Xiao, Jie
    Das, Oisik
    Jiang, Lin
    Xu, Qiang
    Alhassan, Mohammed Okoe
    [J]. POLYMERS, 2020, 12 (01)