Tenectin recruits integrin to stabilize bouton architecture and regulate vesicle release at the Drosophila neuromuscular junction

被引:8
|
作者
Wang, Qi [1 ]
Han, Tae Hee [1 ]
Nguyen, Peter [1 ]
Jarnik, Michel [2 ]
Serpel, Mihaela [1 ]
机构
[1] NICHHD, Sect Cellular Commun Eunice Kennedy Shriver, NIH, Bethesda, MD 20892 USA
[2] NICHHD, Sect Intracellular Prot Trafficking Eunice Kenned, NIH, Bethesda, MD 20892 USA
来源
ELIFE | 2018年 / 7卷
关键词
TUMOR-SUPPRESSOR GENE; MIND-THE-GAP; EXTRACELLULAR-MATRIX; SYNAPTIC PLASTICITY; ALPHA-SPECTRIN; FUNCTIONAL COMPONENTS; GLUTAMATE RECEPTORS; PS INTEGRINS; PROTEIN; GROWTH;
D O I
10.7554/eLife.35518
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Assembly, maintenance and function of synaptic junctions depend on extracellular matrix (ECM) proteins and their receptors. Here we report that Tenectin (Tnc), a Mucin-type protein with RGD motifs, is an ECM component required for the structural and functional integrity of synaptic specializations at the neuromuscular junction (NMJ) in Drosophila. Using genetics, biochemistry, electrophysiology, histology and electron microscopy, we show that Tnc is secreted from motor neurons and striated muscles and accumulates in the synaptic cleft. Tnc selectively recruits alpha PS2/beta PS integrin at synaptic terminals, but only the cis Tnc/integrin complexes appear to be biologically active. These complexes have distinct pre- and postsynaptic functions, mediated at least in part through the local engagement of the spectrin-based membrane skeleton: the presynaptic complexes control neurotransmitter release, while postsynaptic complexes ensure the size and architectural integrity of synaptic boutons. Our study reveals an unprecedented role for integrin in the synaptic recruitment of spectrin-based membrane skeleton.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Tenectin recruits integrin to stabilize boutons and regulate vesicle release at the Drosophila neuromuscular junction.
    Wang, Q.
    Han, T.
    Friend, L.
    Nguyen, P.
    Serpe, M.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [2] In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction
    Levitan, Edwin S.
    Lanni, Frederick
    Shakiryanova, Dinara
    [J]. NATURE PROTOCOLS, 2007, 2 (05) : 1117 - 1125
  • [3] In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction
    Edwin S Levitan
    Frederick Lanni
    Dinara Shakiryanova
    [J]. Nature Protocols, 2007, 2 : 1117 - 1125
  • [4] Vesicle recycling at the Drosophila neuromuscular junction
    Stimson, DT
    Ramaswami, M
    [J]. NEUROMUSCULAR JUNCTIONS IN DROSOPHILA, 1999, 43 : 163 - +
  • [5] Drosophila RSK Negatively Regulates Bouton Number at the Neuromuscular Junction
    Fischer, Matthias
    Raabe, Thomas
    Heisenberg, Martin
    Sencitner, Michael
    [J]. DEVELOPMENTAL NEUROBIOLOGY, 2009, 69 (04) : 212 - 220
  • [6] Nonmuscle Myosin II helps regulate synaptic vesicle mobility at the Drosophila neuromuscular junction
    Seabrooke, Sara
    Qiu, Xinping
    Stewart, Bryan A.
    [J]. BMC NEUROSCIENCE, 2010, 11
  • [7] Drosophila Basigin controls neuromuscular junction growth and synaptic vesicle distribution and release
    Besse, F.
    Mertel, S.
    Kittel, R.
    Wichmann, C.
    Rasse, T.
    Sigrist, S.
    Ephrussi, A.
    [J]. JOURNAL OF NEUROGENETICS, 2006, 20 (3-4) : 86 - 87
  • [8] Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction
    Wildemann, B
    Bicker, G
    [J]. JOURNAL OF NEUROBIOLOGY, 1999, 39 (03): : 337 - 346
  • [9] Nitric oxide induced vesicle release at identified neuromuscular junction of Drosophila melanogaster
    Wildemann, B
    Bicker, G
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 : 220 - 220
  • [10] The hangover gene negatively regulates bouton addition at the Drosophila neuromuscular junction
    Schwenkert, Isabel
    Eltrop, Rouven
    Funk, Natalja
    Steinert, Joern R.
    Schuster, Christoph M.
    Scholz, Henrike
    [J]. MECHANISMS OF DEVELOPMENT, 2008, 125 (08) : 700 - 711