GPU-Accelerated Flexible Molecular Docking

被引:1
|
作者
Fan, Mengran [1 ]
Wang, Jian [2 ]
Jiang, Huaipan [1 ]
Feng, Yilin [1 ]
Mahdavi, Mehrdad [1 ]
Madduri, Kamesh [1 ]
Kandemir, Mahmut T. [1 ]
Dokholyan, Nikolay, V [2 ,3 ,4 ,5 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
[2] Penn State Coll Med, Dept Pharmacol, Hershey, PA 17033 USA
[3] Penn State Coll Med, Biochem & Mol Biol, Hershey, PA 17033 USA
[4] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2021年 / 125卷 / 04期
基金
美国国家卫生研究院;
关键词
BINDING-AFFINITY PREDICTION; SCORING FUNCTIONS IMPROVES; MONTE-CARLO-SIMULATION; CHEMINFORMATICS;
D O I
10.1021/acs.jpcb.0c09051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Virtual screening is a key enabler of computational drug discovery and requires accurate and efficient structure-based molecular docking. In this work, we develop algorithms and software building blocks for molecular docking that can take advantage of graphics processing units (GPUs). Specifically, we focus on MedusaDock, a flexible protein-small molecule docking approach and platform. We accelerate the performance of the coarse docking phase of MedusaDock, as this step constitutes nearly 70% of total running time in typical use-cases. We perform a comprehensive evaluation of the quality and performance with single-GPU and multi-GPU acceleration using a data set of 3875 protein-ligand complexes. The algorithmic ideas, data structure design choices, and performance optimization techniques shed light on GPU acceleration of other structure-based molecular docking software tools.
引用
收藏
页码:1049 / 1060
页数:12
相关论文
共 50 条
  • [1] GPU-accelerated molecular mechanics computations
    Anthopoulos, Athanasios
    Grimstead, Ian
    Brancale, Andrea
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (26) : 2249 - 2260
  • [2] GPU-accelerated coarse-grained simulations of protein-protein docking with flexible linkers
    Pinska, Adrianna
    Best, Robert
    Kuttel, Michelle
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [3] Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics
    Iakovou, Georgios
    Hayward, Steven
    Laycock, Stephen D.
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2015, 61 : 1 - 12
  • [4] GPU-Accelerated High-Accuracy Molecular Docking using Guided Differential Evolution
    Simonsen, Martin
    Pedersen, Christian N. S.
    Christensen, Mikael H.
    Thomsen, Rene
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1803 - 1810
  • [5] GPU-accelerated molecular modeling coming of age
    Stone, John E.
    Hardy, David J.
    Ufimtsev, Ivan S.
    Schulten, Klaus
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2010, 29 (02): : 116 - 125
  • [6] GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting
    Stone, John E.
    McGreevy, Ryan
    Isralewitz, Barry
    Schulten, Klaus
    [J]. FARADAY DISCUSSIONS, 2014, 169 : 265 - 283
  • [7] GPU-Accelerated Microdosimetry
    Decunha, J.
    Mohan, R.
    [J]. MEDICAL PHYSICS, 2022, 49 (06) : E467 - E468
  • [8] GPU-accelerated CellProfiler
    Chakroun, Imen
    Michiels, Nick
    Wuyts, Roel
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 321 - 326
  • [9] GPU-Accelerated Molecular Dynamics: Energy Consumption and Performance
    Vecher, Vyacheslav
    Nikolskii, Vsevolod
    Stegailov, Vladimir
    [J]. SUPERCOMPUTING, RUSCDAYS 2016, 2016, 687 : 78 - 90
  • [10] GPU-Accelerated Apriori Algorithm
    Jiang, Hao
    Xu, Chen-Wei
    Liu, Zhi-Yong
    Yu, Li-Yan
    [J]. 4TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA 2017), 2017, 12