Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate

被引:55
|
作者
Weng, Bo [1 ,2 ]
Morrin, Aoife [3 ]
Shepherd, Roderick [4 ]
Crowley, Karl [3 ]
Killard, Anthony J. [5 ]
Innis, Peter C. [2 ]
Wallace, Gordon G. [2 ]
机构
[1] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing Key Lab Adv Mat & Clean Energies Techon, Chongqing 400715, Peoples R China
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Intelligent Polymer Res Inst, Wollongong, NSW 2522, Australia
[3] Dublin City Univ, Natl Ctr Sensor Res, Sch Chem Sci, Dublin 9, Ireland
[4] Univ Sydney, Sch Chem & Biomol Engn, Lab Sustainable Technol, Sydney, NSW 2006, Australia
[5] Univ W England, Dept Biol Biomed & Analyt Sci, Bristol BS16 1QY, Avon, England
关键词
AMPEROMETRIC BIOSENSOR; HORSERADISH-PEROXIDASE; GLUCOSE-OXIDASE; SENSOR; IMMOBILIZATION; REDUCTION; ARRAY; FILM;
D O I
10.1039/c3tb21378a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Printing has been widely used in the sensor industry for its speed, low cost and production scalability. In this work we present a wholly-printed polypyrrole (PPy) based biosensor produced by inkjet printing bioinks composed of dispersions of PPy nanoparticles and enzymes onto screen-printed carbon electrodes. Two enzymes, horseradish peroxidase (HRP) or glucose oxidase (GoD) were incorporated into the PPy nanoparticle dispersions to impart biosensing functionality and selectivity into the conducting polymer ink. Further functionality was also introduced by deposition of a permselective ethyl cellulose (EC) membrane using inkjet printing. Cyclic voltammetry (CV) and chrono-amperometry were used to characterize the response of the PPy biosensors to H2O2 and glucose. Results demonstrated the possibility of PPy based biosensor fabrication using the rapid and low cost technique of inkjet printing. The detection range of H2O2 was found to be 10 mu M-10 mM and for glucose was 1-5 mM.
引用
收藏
页码:793 / 799
页数:7
相关论文
共 50 条
  • [1] Gold nanoparticle-based biosensors
    Li, Yuanyuang
    Schluesener, Hermann J.
    Xu, Shunqing
    [J]. GOLD BULLETIN, 2010, 43 (01) : 29 - 41
  • [2] Gold nanoparticle-based biosensors
    Yuanyuang Li
    Hermann J. Schluesener
    Shunqing Xu
    [J]. Gold Bulletin, 2010, 43 : 29 - 41
  • [3] Gold nanoparticle-based electrochemical biosensors
    P. Yáñez-Sedeño
    J. M. Pingarrón
    [J]. Analytical and Bioanalytical Chemistry, 2005, 382 : 884 - 886
  • [4] Gold nanoparticle-based electrochemical biosensors
    Yáñez-Sedeño, P
    Pingarrón, JM
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 382 (04) : 884 - 886
  • [5] Gold Nanoparticle-Based Plasmonic Biosensors
    Ferrari, Enrico
    [J]. BIOSENSORS-BASEL, 2023, 13 (03):
  • [6] Gold nanoparticle-based electrochemical biosensors
    Pingarron, Jose M.
    Yanez-Sedeno, Paloma
    Gonzalez-Cortes, Araceli
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (19) : 5848 - 5866
  • [7] Gold nanoparticle-based colorimetric biosensors
    Aldewachi, H.
    Chalati, T.
    Woodroofe, M. N.
    Bricklebank, N.
    Sharrack, B.
    Gardiner, P.
    [J]. NANOSCALE, 2018, 10 (01) : 18 - 33
  • [8] Plasmonic metallic nanoparticle-based biosensors
    Lee, Jung-Hoon
    Mi, Hua
    [J]. ENHANCED SPECTROSCOPIES AND NANOIMAGING 2023, 2023, 12654
  • [9] Nanoparticle-based lateral flow biosensors
    Quesada-Gonzalez, Daniel
    Merkoci, Arben
    [J]. BIOSENSORS & BIOELECTRONICS, 2015, 73 : 47 - 63
  • [10] Polymer nanoparticle-based porous antireflective coating on flexible plastic substrate
    Jiang, Hao
    Zhao, Weizhou
    Li, Chaolong
    Wang, Yuechuan
    [J]. POLYMER, 2011, 52 (03) : 778 - 785