Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits

被引:169
|
作者
Mancuso, Nicholas [1 ]
Shi, Huwenbo [2 ]
Goddard, Page [3 ]
Kichaev, Gleb [2 ]
Gusev, Alexander [4 ,5 ,6 ]
Pasaniuc, Bogdan [1 ,2 ,7 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Bioinformat Interdept Program, Los Angeles, CA 90024 USA
[3] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90024 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[6] Broad Inst Harvard & MIT, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90024 USA
关键词
GENOME-WIDE ASSOCIATION; MENDELIAN RANDOMIZATION; CARDIOVASCULAR RISK; COMMON VARIANTS; LOCI; GWAS; TRANSCRIPTOME; HERITABILITY; ARCHITECTURE; OBESITY;
D O I
10.1016/j.ajhg.2017.01.031
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. Here, we introduce a method for estimating the local genetic correlation between gene expression and a complex trait and utilize it to estimate the genetic correlation due to predicted expression between pairs of traits. We integrated gene expression measurements from 45 expression panels with summary GWAS data to perform 30 multi-tissue transcriptome-wide association studies (TWASs). We identified 1,196 genes whose expression is associated with these traits; of these, 168 reside more than 0.5 Mb away from any previously reported GWAS significant variant. We then used our approach to find 43 pairs of traits with significant genetic correlation at the level of predicted expression; of these, eight were not found through genetic correlation at the SNP level. Finally, we used bi-directional regression to find evidence that BMI causally influences triglyceride levels and that triglyceride levels causally influence low-density lipoprotein. Together, our results provide insight into the role of gene expression in the susceptibility of complex traits and diseases.
引用
收藏
页码:473 / 487
页数:15
相关论文
共 50 条
  • [1] Integrating Gene Expression with Genome-Wide Association Summary Statistics to Identify Genes Associated with Idiopathic Pulmonary Fibrosis Survival
    Hu, X.
    Kim, J.
    Ma, S.
    Huang, Y.
    Oldham, J.
    Allen, R.
    Molyneaux, P. L.
    Joseph, C.
    Guio, B. Guillen
    Kropski, J.
    Lee, C. T.
    Adegunsoye, A. O.
    Pugashetti, J. V.
    Linderholm, A.
    Strek, M. E.
    Hubbard, R. B.
    Hart, S. P.
    Nicholson, A.
    Lancaster, L.
    Lorenzo-Salazar, J. M.
    Vo, V.
    Hirani, N.
    Whyte, M. K.
    Parfrey, H.
    Rassl, D.
    Wallace, W.
    Valenzi, E.
    Zhang, Y.
    Stockwell, A.
    Kaminski, N.
    Wolters, P. J.
    Molina-Molina, M.
    Martinez, F. J.
    Hall, I. P.
    Tobin, M. D.
    Maher, T. M.
    Blackwell, T. S.
    Yaspan, B. L.
    Jenkins, R.
    Wain, L. V.
    Flores, C.
    Noth, I.
    Manichaikul, A.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [2] Dissecting the genetics of complex traits using summary association statistics
    Bogdan Pasaniuc
    Alkes L. Price
    [J]. Nature Reviews Genetics, 2017, 18 : 117 - 127
  • [3] Dissecting the genetics of complex traits using summary association statistics
    Pasaniuc, Bogdan
    Price, Alkes L.
    [J]. NATURE REVIEWS GENETICS, 2017, 18 (02) : 117 - 127
  • [4] COMPLEX TRAITS Integrating gene variation and expression to understand complex traits
    Cloney, Ross
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (04) : 194 - 194
  • [5] Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes
    Wang, Lida
    Khunsriraksakul, Chachrit
    Markus, Havell
    Chen, Dieyi
    Zhang, Fan
    Chen, Fang
    Zhan, Xiaowei
    Carrel, Laura
    Liu, Dajiang. J.
    Jiang, Bibo
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [6] Integrating gene variation and expression to understand complex traits
    Ross Cloney
    [J]. Nature Reviews Genetics, 2016, 17 : 194 - 194
  • [7] A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits
    Ning, Zheng
    Lee, Youngjo
    Joshi, Peter K.
    Wilson, James F.
    Pawitan, Yudi
    Shen, Xia
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (06) : 903 - 912
  • [8] A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits
    Ning, Zheng
    Lee, Youngjo
    Joshi, Peter K.
    Wilson, James F.
    Pawitan, Yudi
    Shen, Xia
    [J]. HUMAN HEREDITY, 2017, 83 (01) : 19 - 19
  • [9] Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data
    Shi, Huwenbo
    Kichaev, Gleb
    Pasaniuc, Bogdan
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 99 (01) : 139 - 153
  • [10] Integrating genetic and gene expression evidence into genome wide association analysis identified novel genes for lipid traits
    Mo, Xingbo
    Zhang, Huan
    Lei, Shufeng
    Zhang, Yonghong
    [J]. CARDIOLOGY, 2014, 129 : 54 - 55