Global Barotropic Tide Modeling Using Inline Self-Attraction and Loading in MPAS-Ocean

被引:7
|
作者
Barton, Kristin N. [1 ]
Pal, Nairita [2 ]
Brus, Steven R. [3 ]
Petersen, Mark R. [2 ]
Arbic, Brian K. [4 ]
Engwirda, Darren [2 ]
Roberts, Andrew F. [2 ]
Westerink, Joannes J. [5 ]
Wirasaet, Damrongsak [5 ]
Schindelegger, Michael [6 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[4] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA
[5] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
[6] Univ Bonn, Inst Geodesy & Geoinformat, Bonn, Germany
关键词
surface tides; self-attraction and loading; numerical ocean modeling; MPAS-Ocean; barotropic tides; E3SM; INTERNAL WAVE DRAG; GENERAL-CIRCULATION; ACCURACY ASSESSMENT; DISSIPATION; ICE; M2; SIMULATION; EQUATIONS; DESIGN; ENERGY;
D O I
10.1029/2022MS003207
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We examine ocean tides in the barotropic version of the Model for Prediction Across Scales (MPAS-Ocean), the ocean component of the Department of Energy Earth system model. We focus on four factors that affect tidal accuracy: self-attraction and loading (SAL), model resolution, details of the underlying bathymetry, and parameterized topographic wave drag. The SAL term accounts for the tidal loading of Earth's crust and the self-gravitation of the ocean and the load-deformed Earth. A common method for calculating SAL is to decompose mass anomalies into their spherical harmonic constituents. Here, we compare a scalar SAL approximation versus an inline SAL using a fast spherical harmonic transform package. Wave drag accounts for energy lost by breaking internal tides that are produced by barotropic tidal flow over topographic features. We compare a series of successively finer quasi-uniform resolution meshes (62.9, 31.5, 15.7, and 7.87 km) to a variable resolution (45 to 5 km) configuration. We ran MPAS-Ocean in a single-layer barotropic mode forced by five tidal constituents. The 45 to 5 km variable resolution mesh obtained the best total root-mean-square error (5.4 cm) for the deep ocean (> $ > $1,000 m) M2 ${\mathrm{M}}_{2}$ tide compared to TPXO8 and ran twice as fast as the quasi-uniform 8 km mesh, which had an error of 5.8 cm. This error is comparable to those found in other forward (non-assimilative) ocean tide models. In future work, we plan to use MPAS-Ocean to study tidal interactions with other Earth system components, and the tidal response to climate change.
引用
收藏
页数:19
相关论文
共 12 条
  • [1] An implicit barotropic mode solver for MPAS-ocean using a modern Fortran solver interface
    Kang, Hyun-Gyu
    Tuminaro, Raymond S.
    Prokopenko, Andrey
    Johnson, Seth R.
    Salinger, Andrew G.
    Evans, Katherine J.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2024, 38 (03): : 175 - 191
  • [2] Parameterization of ocean self-attraction and loading in numerical models of the ocean circulation
    Stepanov, VN
    Hughes, CW
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C3)
  • [3] EFFECTS OF LOADING AND SELF-ATTRACTION ON GLOBAL OCEAN TIDES - MODEL AND RESULTS OF A NUMERICAL EXPERIMENT
    GORDEEV, RG
    KAGAN, BA
    POLYAKOV, EV
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 1977, 7 (02) : 161 - 170
  • [4] Dynamic Adjustment of the Ocean Circulation to Self-Attraction and Loading Effects
    Vinogradova, Nadya T.
    Ponte, Rui M.
    Quinn, Katherine J.
    Tamisiea, Mark E.
    Campin, Jean-Michel
    Davis, James L.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2015, 45 (03) : 678 - 689
  • [5] Effects of self-attraction and loading on annual variations of ocean bottom pressure
    Vinogradova, Nadya T.
    Ponte, Rui M.
    Tamisiea, Mark E.
    Davis, James L.
    Hill, Emma M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
  • [6] Improved modeling of sea level patterns by incorporating self-attraction and loading
    Kuhlmann, J.
    Dobslaw, H.
    Thomas, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [7] Anelasticity and Lateral Heterogeneities in Earth's Upper Mantle: Impact on Surface Displacements, Self-Attraction and Loading, and Ocean Tide Dynamics
    Huang, Pingping
    Sulzbach, Roman Lucas
    Tanaka, Yoshiyuki
    Klemann, Volker
    Dobslaw, Henryk
    Martinec, Zdenek
    Thomas, Maik
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (09)
  • [8] Self-attraction and loading effects on ocean mass redistribution at monthly and longer time scales
    Vinogradova, N. T.
    Ponte, R. M.
    Tamisiea, M. E.
    Quinn, K. J.
    Hill, E. M.
    Davis, J. L.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [9] Scalable self attraction and loading calculations for unstructured ocean tide models
    Brus, Steven R.
    Barton, Kristin N.
    Pal, Nairita
    Roberts, Andrew F.
    Engwirda, Darren
    Petersen, Mark R.
    Arbic, Brian K.
    Wirasaet, Damrongsak
    Westerink, Joannes J.
    Schindelegger, Michael
    OCEAN MODELLING, 2023, 182
  • [10] Self-attraction and loading feedback on ocean dynamics in both shallow water equations and primitive equations
    Shihora, Linus
    Sulzbach, Roman
    Dobslaw, Henryk
    Thomas, Maik
    OCEAN MODELLING, 2022, 169