Compositional Maps of the Lunar Polar Regions Derived from the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter Data

被引:27
|
作者
Lemelin, Myriam [1 ,2 ]
Lucey, Paul G. G. [3 ]
Camon, Alex [1 ]
机构
[1] Univ Sherbrooke, Dept Geomatique Appl, Sherbrooke, PQ J1K 2R1, Canada
[2] NASA, Ctr Lunar Sci & Explorat, Solar Syst Explorat Res Virtual Inst, Moffett Field, CA 94035 USA
[3] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI USA
来源
PLANETARY SCIENCE JOURNAL | 2022年 / 3卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
AITKEN BASIN; SURFACE; IRON; MINERALOGY; MANTLE; CALIBRATION; ABUNDANCE; OLIVINE; MODEL; CRUST;
D O I
10.3847/PSJ/ac532c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Due to the challenging illumination conditions of the lunar polar regions, mineralogic maps have generally been constrained to within 0 degrees-70 degrees N/S. Here we generate a gridded reflectance data cube from the Kaguya Spectral Profiler measurements for each polar region and calibrate it to absolute reflectance using data from the Lunar Orbiter Laser Altimeter. We use this data set to derive the first quantitative mineral maps of iron oxide (FeO), the optical maturity parameter (OMAT), and nanophase iron poleward of 50 degrees N/S at a spatial resolution of 1 km pixel(-1). We evaluate potential latitudinal trends in space weathering and optical maturity and characterize the polar geology, with an emphasis on the Artemis region (84 degrees-90 degrees S). The maps of FeO are in excellent agreement with the abundances measured by the Lunar Prospector and provide an increased level of detail, such as the excavation of high- and low-FeO material by De Forest crater. The OMAT maps offer a fantastic view of both polar regions. They highlight small fresh craters, walls, and central peaks, as well as rays extending through multiple degrees of latitude, such as those from Tycho and De Forest, which extend into the Artemis region. Both polar regions are characterized by the ubiquitous presence of noritic anorthosites and anorthositic norite. Low-calcium pyroxene is largely the dominant mafic mineral present. The Artemis region has relatively homogeneous FeO and plagioclase content at the observed spatial resolution. The lowest FeO values are found near Shackleton, between Shoemaker and Faustini, and on the central peak of Amundsen crater.
引用
收藏
页数:14
相关论文
共 36 条
  • [1] Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter
    Noda, H.
    Araki, H.
    Goossens, S.
    Ishihara, Y.
    Matsumoto, K.
    Tazawa, S.
    Kawano, N.
    Sasaki, S.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (24)
  • [2] Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment
    Fisher, Elizabeth A.
    Lucey, Paul G.
    Lemelin, Myriam
    Greenhagen, Benjamin T.
    Siegler, Matthew A.
    Mazarico, Erwan
    Aharonson, Oded
    Williams, Jean-Pierre
    Hayne, Paul O.
    Neumann, Gregory A.
    Paige, David A.
    Smith, David E.
    Zuber, Maria T.
    [J]. ICARUS, 2017, 292 : 74 - 85
  • [3] Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units
    Kreslavsky, Mikhail A.
    Head, James W.
    Neumann, Gregory A.
    Rosenburg, Margaret A.
    Aharonson, Oded
    Smith, David E.
    Zuber, Maria T.
    [J]. ICARUS, 2013, 226 (01) : 52 - 66
  • [4] A New View of the Lunar South Pole from the Lunar Orbiter Laser Altimeter (LOLA)
    Barker, Michael K.
    Mazarico, Erwan
    Neumann, Gregory A.
    Smith, David E.
    Zuber, Maria T.
    Head, James W.
    Sun, Xiaoli
    [J]. PLANETARY SCIENCE JOURNAL, 2023, 4 (09):
  • [5] Initial observations from the Lunar Orbiter Laser Altimeter (LOLA)
    Smith, David E.
    Zuber, Maria T.
    Neumann, Gregory A.
    Lemoine, Frank G.
    Mazarico, Erwan
    Torrence, Mark H.
    McGarry, Jan F.
    Rowlands, David D.
    Head, James W., III
    Duxbury, Thomas H.
    Aharonson, Oded
    Lucey, Paul G.
    Robinson, Mark S.
    Barnouin, Olivier S.
    Cavanaugh, John F.
    Sun, Xiaoli
    Liiva, Peter
    Mao, Dan-dan
    Smith, James C.
    Bartels, Arlin E.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [6] Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit
    Smith, David E.
    Zuber, Maria T.
    Neumann, Gregory A.
    Mazarico, Erwan
    Lemoine, Frank G.
    Head, James W., III
    Lucey, Paul G.
    Aharonson, Oded
    Robinson, Mark S.
    Sun, Xiaoli
    Torrence, Mark H.
    Barker, Michael K.
    Oberst, Juergen
    Duxbury, Thomas C.
    Mao, Dandan
    Barnouin, Olivier S.
    Jha, Kopal
    Rowlands, David D.
    Goossens, Sander
    Baker, David
    Bauer, Sven
    Glaeser, Philipp
    Lemelin, Myriam
    Rosenburg, Margaret
    Sori, Michael M.
    Whitten, Jennifer
    Mcclanahan, Timothy
    [J]. ICARUS, 2017, 283 : 70 - 91
  • [7] Sandmeier Model Based Topographic Correction to Lunar Spectral Profiler (SP) Data from KAGUYA Satellite
    Chen Sheng-bo
    Wang Jing-ran
    Guo Peng-ju
    Wang Ming-chang
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (09) : 2573 - 2577
  • [8] A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera
    Barker, M. K.
    Mazarico, E.
    Neumann, G. A.
    Zuber, M. T.
    Haruyama, J.
    Smith, D. E.
    [J]. ICARUS, 2016, 273 : 346 - 355
  • [9] Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry
    Barker, M. K.
    Sun, X.
    Mazarico, E.
    Neumann, G. A.
    Zuber, M. T.
    Smith, D. E.
    [J]. ICARUS, 2016, 273 : 96 - 113
  • [10] Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry
    Araki, H.
    Tazawa, S.
    Noda, H.
    Ishihara, Y.
    Goossens, S.
    Sasaki, S.
    Kawano, N.
    Kamiya, I.
    Otake, H.
    Oberst, J.
    Shum, C.
    [J]. SCIENCE, 2009, 323 (5916) : 897 - 900